Nuprl Lemma : fset-ac-le_wf
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[ac1,ac2:fset(fset(T))].  (fset-ac-le(eq;ac1;ac2) ∈ ℙ)
Proof
Definitions occuring in Statement : 
fset-ac-le: fset-ac-le(eq;ac1;ac2), 
fset: fset(T), 
deq: EqDecider(T), 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
fset-ac-le: fset-ac-le(eq;ac1;ac2), 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s], 
iff: P ⇐⇒ Q, 
all: ∀x:A. B[x], 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
and: P ∧ Q, 
prop: ℙ
Lemmas referenced : 
fset-all_wf, 
fset_wf, 
bnot_wf, 
fset-null_wf, 
fset-filter_wf, 
deq-f-subset_wf, 
bool_wf, 
all_wf, 
iff_wf, 
f-subset_wf, 
assert_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
setEquality, 
functionEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[ac1,ac2:fset(fset(T))].    (fset-ac-le(eq;ac1;ac2)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_14-PM-03_43_00
Last ObjectModification:
2015_12_26-PM-06_39_29
Theory : finite!sets
Home
Index