Nuprl Lemma : fset-some-iff2
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:T ⟶ 𝔹]. ∀[s:fset(T)].  uiff(fset-some(s;x.P[x]);¬(∀x:T. (x ∈ s ⇒ (¬↑P[x]))))
Proof
Definitions occuring in Statement : 
fset-some: fset-some(s;x.P[x]), 
fset-member: a ∈ s, 
fset: fset(T), 
deq: EqDecider(T), 
assert: ↑b, 
bool: 𝔹, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
false: False, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
fset-some: fset-some(s;x.P[x]), 
exists: ∃x:A. B[x]
Lemmas referenced : 
fset-some-iff, 
all_wf, 
fset-member_wf, 
not_wf, 
assert_wf, 
fset-some_wf, 
exists_wf, 
and_wf, 
fset-null_wf, 
fset-filter_wf, 
fset_wf, 
bool_wf, 
deq_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_pairFormation, 
productElimination, 
introduction, 
independent_isectElimination, 
lambdaFormation, 
independent_functionElimination, 
voidElimination, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
applyEquality, 
dependent_functionElimination, 
universeEquality, 
dependent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].
    uiff(fset-some(s;x.P[x]);\mneg{}(\mforall{}x:T.  (x  \mmember{}  s  {}\mRightarrow{}  (\mneg{}\muparrow{}P[x]))))
Date html generated:
2016_05_14-PM-03_41_07
Last ObjectModification:
2015_12_26-PM-06_40_34
Theory : finite!sets
Home
Index