Nuprl Lemma : bij_imp_exists_inv

[A,B:Type].  ∀f:A ⟶ B. (Bij(A;B;f)  (∃g:B ⟶ A. InvFuns(A;B;f;g)))


Proof




Definitions occuring in Statement :  biject: Bij(A;B;f) inv_funs: InvFuns(A;B;f;g) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop: biject: Bij(A;B;f) surject: Surj(A;B;f) inject: Inj(A;B;f) and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] exists: x:A. B[x] inv_funs: InvFuns(A;B;f;g) compose: g tidentity: Id{T} identity: Id guard: {T} squash: T true: True subtype_rel: A ⊆B uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  biject_wf ax_choice equal_wf inv_funs_wf squash_wf true_wf subtype_rel_self iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis functionEquality Error :inhabitedIsType,  Error :universeIsType,  universeEquality productElimination sqequalRule lambdaEquality applyEquality independent_functionElimination dependent_pairFormation independent_pairFormation functionExtensionality dependent_functionElimination imageElimination equalityTransitivity equalitySymmetry because_Cache natural_numberEquality imageMemberEquality baseClosed instantiate independent_isectElimination

Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  (Bij(A;B;f)  {}\mRightarrow{}  (\mexists{}g:B  {}\mrightarrow{}  A.  InvFuns(A;B;f;g)))



Date html generated: 2019_06_20-PM-00_26_32
Last ObjectModification: 2019_06_19-PM-06_20_06

Theory : fun_1


Home Index