Nuprl Lemma : bij_imp_exists_inv
∀[A,B:Type].  ∀f:A ⟶ B. (Bij(A;B;f) 
⇒ (∃g:B ⟶ A. InvFuns(A;B;f;g)))
Proof
Definitions occuring in Statement : 
biject: Bij(A;B;f)
, 
inv_funs: InvFuns(A;B;f;g)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
biject: Bij(A;B;f)
, 
surject: Surj(A;B;f)
, 
inject: Inj(A;B;f)
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
exists: ∃x:A. B[x]
, 
inv_funs: InvFuns(A;B;f;g)
, 
compose: f o g
, 
tidentity: Id{T}
, 
identity: Id
, 
guard: {T}
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
biject_wf, 
ax_choice, 
equal_wf, 
inv_funs_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
Error :inhabitedIsType, 
Error :universeIsType, 
universeEquality, 
productElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
independent_functionElimination, 
dependent_pairFormation, 
independent_pairFormation, 
functionExtensionality, 
dependent_functionElimination, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination
Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  (Bij(A;B;f)  {}\mRightarrow{}  (\mexists{}g:B  {}\mrightarrow{}  A.  InvFuns(A;B;f;g)))
Date html generated:
2019_06_20-PM-00_26_32
Last ObjectModification:
2019_06_19-PM-06_20_06
Theory : fun_1
Home
Index