Nuprl Lemma : fun_exp_apply_add1

[T:Type]. ∀[n:ℕ]. ∀[f:T ⟶ T]. ∀[x:T].  ((f (f^n x)) (f^n x) ∈ T)


Proof




Definitions occuring in Statement :  fun_exp: f^n nat: uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: top: Top subtract: m eq_int: (i =z j) ifthenelse: if then else fi  bfalse: ff compose: g btrue: tt squash: T all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) subtype_rel: A ⊆B true: True guard: {T}
Lemmas referenced :  nat_wf fun_exp_unroll false_wf le_wf subtract_wf equal_wf squash_wf true_wf fun_exp_add_apply fun_exp_wf decidable__le not-le-2 sq_stable__le condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis hypothesisEquality sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin axiomEquality because_Cache functionEquality cumulativity extract_by_obid universeEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation lambdaFormation voidElimination voidEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry addEquality setElimination rename dependent_functionElimination unionElimination productElimination independent_functionElimination independent_isectElimination imageMemberEquality baseClosed intEquality minusEquality functionExtensionality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[f:T  {}\mrightarrow{}  T].  \mforall{}[x:T].    ((f  (f\^{}n  x))  =  (f\^{}n  +  1  x))



Date html generated: 2017_04_14-AM-07_34_44
Last ObjectModification: 2017_02_27-PM-03_07_41

Theory : fun_1


Home Index