Nuprl Lemma : fun_exp_unroll

[n:ℕ]. ∀[f:Top].  (f^n if (n =z 0) then λx.x else f^n fi )


Proof




Definitions occuring in Statement :  fun_exp: f^n compose: g nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] top: Top lambda: λx.A[x] subtract: m natural_number: $n sqequal: t
Definitions unfolded in proof :  fun_exp: f^n uall: [x:A]. B[x] member: t ∈ T nat: top: Top all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False nequal: a ≠ b ∈  sq_stable: SqStable(P) squash: T subtype_rel: A ⊆B le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True subtract: m
Lemmas referenced :  primrec-unroll lt_int_wf eqtt_to_assert assert_of_lt_int eq_int_wf bool_wf assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int not-equal-2 sq_stable__le add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel condition-implies-le add-commutes minus-add minus-zero less-iff-le le-add-cancel2 not_functionality_wrt_uiff assert_wf less_than_wf not-lt-2 le_antisymmetry_iff top_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis isect_memberEquality voidElimination voidEquality because_Cache natural_numberEquality lambdaFormation unionElimination equalityElimination productElimination independent_isectElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination imageMemberEquality baseClosed imageElimination addEquality applyEquality lambdaEquality intEquality minusEquality axiomSqEquality Error :universeIsType

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:Top].    (f\^{}n  \msim{}  if  (n  =\msubz{}  0)  then  \mlambda{}x.x  else  f  o  f\^{}n  -  1  fi  )



Date html generated: 2019_06_20-PM-00_26_40
Last ObjectModification: 2018_09_26-PM-00_12_07

Theory : fun_1


Home Index