Nuprl Lemma : complete_nat_ind

[P:ℕ ⟶ ℙ]. ((∀i:ℕ((∀j:ℕi. P[j])  P[i]))  (∀i:ℕP[i]))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] nat: so_apply: x[s] subtype_rel: A ⊆B uimplies: supposing a le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A int_seg: {i..j-} lelt: i ≤ j < k guard: {T} decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m top: Top true: True less_than: a < b sq_stable: SqStable(P) squash: T
Lemmas referenced :  zero-mul add-mul-special le_wf add-zero zero-add sq_stable__le not-le-2 decidable__le lelt_wf le-add-cancel add-associates add_functionality_wrt_le less-iff-le add-commutes minus-one-mul-top add-swap minus-one-mul minus-minus minus-add condition-implies-le not-lt-2 decidable__lt primrec-wf2 less_than_wf set_wf subtract_wf less_than_irreflexivity less_than_transitivity1 false_wf int_seg_subtype_nat int_seg_wf all_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality functionEquality natural_numberEquality setElimination rename hypothesisEquality applyEquality independent_isectElimination independent_pairFormation because_Cache universeEquality cumulativity productElimination independent_functionElimination voidElimination dependent_functionElimination intEquality introduction dependent_set_memberEquality unionElimination addEquality minusEquality isect_memberEquality voidEquality imageMemberEquality baseClosed imageElimination multiplyEquality

Latex:
\mforall{}[P:\mBbbN{}  {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}i:\mBbbN{}.  ((\mforall{}j:\mBbbN{}i.  P[j])  {}\mRightarrow{}  P[i]))  {}\mRightarrow{}  (\mforall{}i:\mBbbN{}.  P[i]))



Date html generated: 2016_05_13-PM-04_02_56
Last ObjectModification: 2016_01_14-PM-07_24_48

Theory : int_1


Home Index