Nuprl Lemma : eq_atom_eq_true_elim

[x,y:Atom].  y ∈ Atom supposing =a tt


Proof




Definitions occuring in Statement :  eq_atom: =a y btrue: tt bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] atom: Atom equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B prop: implies:  Q uiff: uiff(P;Q) and: P ∧ Q
Lemmas referenced :  equal-wf-base bool_wf atom_subtype_base uiff_transitivity assert_wf eq_atom_wf eqtt_to_assert assert_of_eq_atom
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut hypothesis Error :universeIsType,  extract_by_obid sqequalHypSubstitution isectElimination thin sqequalRule baseApply closedConclusion baseClosed hypothesisEquality applyEquality because_Cache isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  atomEquality independent_functionElimination productElimination independent_isectElimination

Latex:
\mforall{}[x,y:Atom].    x  =  y  supposing  x  =a  y  =  tt



Date html generated: 2019_06_20-AM-11_33_14
Last ObjectModification: 2018_09_26-PM-00_12_07

Theory : int_1


Home Index