Nuprl Lemma : eq_atom_eq_true_elim
∀[x,y:Atom].  x = y ∈ Atom supposing x =a y = tt
Proof
Definitions occuring in Statement : 
eq_atom: x =a y
, 
btrue: tt
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
atom: Atom
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
Lemmas referenced : 
equal-wf-base, 
bool_wf, 
atom_subtype_base, 
uiff_transitivity, 
assert_wf, 
eq_atom_wf, 
eqtt_to_assert, 
assert_of_eq_atom
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
Error :universeIsType, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
because_Cache, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :inhabitedIsType, 
atomEquality, 
independent_functionElimination, 
productElimination, 
independent_isectElimination
Latex:
\mforall{}[x,y:Atom].    x  =  y  supposing  x  =a  y  =  tt
Date html generated:
2019_06_20-AM-11_33_14
Last ObjectModification:
2018_09_26-PM-00_12_07
Theory : int_1
Home
Index