Nuprl Lemma : free-from-atom2-int

[a:Atom2]. ∀[n:ℤ].  a#n:ℤ


Proof




Definitions occuring in Statement :  free-from-atom: a#x:T atom: Atom$n uall: [x:A]. B[x] int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] decidable: Dec(P) or: P ∨ Q nat: uimplies: supposing a prop: uiff: uiff(P;Q) and: P ∧ Q subtype_rel: A ⊆B top: Top subtract: m le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q nat_plus: + less_than: a < b squash: T true: True gt: i > j
Lemmas referenced :  decidable__lt minus-minus nat_wf free-from-atom2-nat le_weakening2 minus-one-mul le_wf not-lt-2 add_functionality_wrt_le subtract_wf le_reflexive minus-one-mul-top minus-zero add-zero one-mul zero-add add-commutes add-mul-special zero-mul less-iff-le false_wf add-associates add-swap omega-shadow less_than_wf free-from-atom2-subtype not-gt-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality natural_numberEquality hypothesis unionElimination freeFromAtomAxiom intEquality sqequalRule isect_memberEquality isectElimination because_Cache atomnEquality freeFromAtomApplication freeFromAtomTriviality lambdaEquality minusEquality setElimination rename dependent_set_memberEquality independent_isectElimination productElimination multiplyEquality applyEquality voidElimination voidEquality addEquality independent_pairFormation lambdaFormation imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[a:Atom2].  \mforall{}[n:\mBbbZ{}].    a\#n:\mBbbZ{}



Date html generated: 2019_06_20-PM-00_25_52
Last ObjectModification: 2018_08_15-PM-03_10_56

Theory : int_1


Home Index