Nuprl Lemma : free-from-atom2-nat

[a:Atom2]. ∀[n:ℕ].  a#n:ℕ


Proof




Definitions occuring in Statement :  nat: free-from-atom: a#x:T atom: Atom$n uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel nat_wf le_reflexive le_wf subtract-add-cancel not-le-2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination sqequalRule lambdaEquality dependent_functionElimination freeFromAtomAxiom unionElimination independent_pairFormation productElimination addEquality applyEquality isect_memberEquality voidEquality intEquality minusEquality because_Cache atomnEquality freeFromAtomTriviality dependent_set_memberEquality freeFromAtomApplication

Latex:
\mforall{}[a:Atom2].  \mforall{}[n:\mBbbN{}].    a\#n:\mBbbN{}



Date html generated: 2019_06_20-PM-00_25_49
Last ObjectModification: 2018_08_15-PM-03_09_30

Theory : int_1


Home Index