Nuprl Lemma : int_le_to_int_upper_uniform
∀i:ℤ. ∀[A:{i...} ⟶ ℙ]. ({∀[j:ℤ]. A[j] supposing i ≤ j} 
⇐⇒ {∀[j:{i...}]. A[j]})
Proof
Definitions occuring in Statement : 
int_upper: {i...}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
guard: {T}
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
int_upper: {i...}
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
not: ¬A
, 
false: False
Lemmas referenced : 
less_than'_wf, 
le_wf, 
isect_wf, 
uall_wf, 
int_upper_wf, 
sq_stable__le
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
isect_memberFormation, 
independent_pairFormation, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
independent_isectElimination, 
lemma_by_obid, 
independent_functionElimination, 
introduction, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
intEquality, 
lambdaEquality, 
applyEquality, 
dependent_set_memberEquality, 
because_Cache, 
productElimination, 
independent_pairEquality, 
dependent_functionElimination, 
voidElimination, 
axiomEquality, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}[A:\{i...\}  {}\mrightarrow{}  \mBbbP{}].  (\{\mforall{}[j:\mBbbZ{}].  A[j]  supposing  i  \mleq{}  j\}  \mLeftarrow{}{}\mRightarrow{}  \{\mforall{}[j:\{i...\}].  A[j]\})
Date html generated:
2016_05_13-PM-04_02_45
Last ObjectModification:
2016_01_14-PM-07_24_30
Theory : int_1
Home
Index