Nuprl Lemma : int_lt_to_int_upper
∀i:ℤ. ∀[A:{i + 1...} ⟶ ℙ]. ({∀j:ℤ. A[j] supposing i < j} 
⇐⇒ {∀j:{i + 1...}. A[j]})
Proof
Definitions occuring in Statement : 
int_upper: {i...}
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
guard: {T}
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
int_upper: {i...}
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
less_than': less_than'(a;b)
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
decidable__lt, 
false_wf, 
not-lt-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
le-add-cancel, 
int_upper_wf, 
all_wf, 
isect_wf, 
less_than_wf, 
decidable__le, 
not-le-2, 
less-iff-le, 
add-associates, 
zero-add, 
le-add-cancel2, 
le_wf, 
member-less_than
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
isect_memberFormation, 
independent_pairFormation, 
cut, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
independent_isectElimination, 
productElimination, 
lemma_by_obid, 
unionElimination, 
voidElimination, 
independent_functionElimination, 
isectElimination, 
addEquality, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
intEquality, 
because_Cache, 
minusEquality, 
dependent_set_memberEquality, 
introduction, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}[A:\{i  +  1...\}  {}\mrightarrow{}  \mBbbP{}].  (\{\mforall{}j:\mBbbZ{}.  A[j]  supposing  i  <  j\}  \mLeftarrow{}{}\mRightarrow{}  \{\mforall{}j:\{i  +  1...\}.  A[j]\})
Date html generated:
2016_05_13-PM-04_02_39
Last ObjectModification:
2015_12_26-AM-10_56_45
Theory : int_1
Home
Index