Nuprl Lemma : int_lt_to_int_upper

i:ℤ. ∀[A:{i 1...} ⟶ ℙ]. ({∀j:ℤA[j] supposing i < j} ⇐⇒ {∀j:{i 1...}. A[j]})


Proof




Definitions occuring in Statement :  int_upper: {i...} less_than: a < b uimplies: supposing a uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q function: x:A ⟶ B[x] add: m natural_number: $n int:
Definitions unfolded in proof :  guard: {T} all: x:A. B[x] uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T int_upper: {i...} uimplies: supposing a le: A ≤ B decidable: Dec(P) or: P ∨ Q not: ¬A rev_implies:  Q false: False prop: uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-commutes add_functionality_wrt_le le-add-cancel int_upper_wf all_wf isect_wf less_than_wf decidable__le not-le-2 less-iff-le add-associates zero-add le-add-cancel2 le_wf member-less_than
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation isect_memberFormation independent_pairFormation cut hypothesis sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality independent_isectElimination productElimination lemma_by_obid unionElimination voidElimination independent_functionElimination isectElimination addEquality natural_numberEquality applyEquality lambdaEquality isect_memberEquality voidEquality intEquality because_Cache minusEquality dependent_set_memberEquality introduction functionEquality cumulativity universeEquality

Latex:
\mforall{}i:\mBbbZ{}.  \mforall{}[A:\{i  +  1...\}  {}\mrightarrow{}  \mBbbP{}].  (\{\mforall{}j:\mBbbZ{}.  A[j]  supposing  i  <  j\}  \mLeftarrow{}{}\mRightarrow{}  \{\mforall{}j:\{i  +  1...\}.  A[j]\})



Date html generated: 2016_05_13-PM-04_02_39
Last ObjectModification: 2015_12_26-AM-10_56_45

Theory : int_1


Home Index