Step
*
1
1
of Lemma
absval-diff-product-bound
1. u : ℕ
2. v : ℕu
3. x : ℕ
4. y : ℕx
⊢ (|u - v| * |x - y|) ≤ |(u * x) - v * y|
BY
{ ((Subst' |u - v| ~ u - v 0 THENA Auto)
THEN (Subst' |x - y| ~ x - y 0 THENA Auto)
THEN Assert ⌜|(u * x) - v * y| ~ (u * x) - v * y⌝⋅) }
1
.....assertion.....
1. u : ℕ
2. v : ℕu
3. x : ℕ
4. y : ℕx
⊢ |(u * x) - v * y| ~ (u * x) - v * y
2
1. u : ℕ
2. v : ℕu
3. x : ℕ
4. y : ℕx
5. |(u * x) - v * y| ~ (u * x) - v * y
⊢ ((u - v) * (x - y)) ≤ |(u * x) - v * y|
Latex:
Latex:
1. u : \mBbbN{}
2. v : \mBbbN{}u
3. x : \mBbbN{}
4. y : \mBbbN{}x
\mvdash{} (|u - v| * |x - y|) \mleq{} |(u * x) - v * y|
By
Latex:
((Subst' |u - v| \msim{} u - v 0 THENA Auto)
THEN (Subst' |x - y| \msim{} x - y 0 THENA Auto)
THEN Assert \mkleeneopen{}|(u * x) - v * y| \msim{} (u * x) - v * y\mkleeneclose{}\mcdot{})
Home
Index