Step
*
2
2
1
of Lemma
absval-diff-product-bound
1. ∀u:ℕ. ∀v:ℕu. ∀x:ℕ. ∀y:ℕx. ((|u - v| * |x - y|) ≤ |(u * x) - v * y|)
2. u : ℕ
3. v : ℕ
4. x : ℕ
5. y : ℕ
6. ¬(u = v ∈ ℤ)
7. x = y ∈ ℤ
⊢ (|u - v| * |x - y|) ≤ |(imax(u;v) * imax(x;y)) - imin(u;v) * imin(x;y)|
BY
{ (Subst' |x - y| ~ 0 0 THEN Auto' THEN HypSubst' (-1) 0 THEN RW IntNormC 0 THEN Auto) }
Latex:
Latex:
1. \mforall{}u:\mBbbN{}. \mforall{}v:\mBbbN{}u. \mforall{}x:\mBbbN{}. \mforall{}y:\mBbbN{}x. ((|u - v| * |x - y|) \mleq{} |(u * x) - v * y|)
2. u : \mBbbN{}
3. v : \mBbbN{}
4. x : \mBbbN{}
5. y : \mBbbN{}
6. \mneg{}(u = v)
7. x = y
\mvdash{} (|u - v| * |x - y|) \mleq{} |(imax(u;v) * imax(x;y)) - imin(u;v) * imin(x;y)|
By
Latex:
(Subst' |x - y| \msim{} 0 0 THEN Auto' THEN HypSubst' (-1) 0 THEN RW IntNormC 0 THEN Auto)
Home
Index