Step
*
1
1
1
1
of Lemma
mu-ge-bound-property
.....basecase.....
1. ∀[n,m:ℤ]. ∀[f:{n..m-} ⟶ 𝔹]. mu-ge(f;n) ∈ {n..m-} supposing ∃k:{n..m-}. (↑(f k))
2. d : ℤ
⊢ ∀n,m:ℤ.
(((m - n) ≤ 0)
⇒ (∀f:{n..m-} ⟶ 𝔹. ((∃m:{n..m-}. (↑(f m)))
⇒ {(↑(f mu-ge(f;n))) ∧ (∀[i:{n..mu-ge(f;n)-}]. (¬↑(f i)))})))
BY
{ TACTIC:(Auto THEN ExRepD THEN Auto') }
Latex:
Latex:
.....basecase.....
1. \mforall{}[n,m:\mBbbZ{}]. \mforall{}[f:\{n..m\msupminus{}\} {}\mrightarrow{} \mBbbB{}]. mu-ge(f;n) \mmember{} \{n..m\msupminus{}\} supposing \mexists{}k:\{n..m\msupminus{}\}. (\muparrow{}(f k))
2. d : \mBbbZ{}
\mvdash{} \mforall{}n,m:\mBbbZ{}.
(((m - n) \mleq{} 0)
{}\mRightarrow{} (\mforall{}f:\{n..m\msupminus{}\} {}\mrightarrow{} \mBbbB{}
((\mexists{}m:\{n..m\msupminus{}\}. (\muparrow{}(f m))) {}\mRightarrow{} \{(\muparrow{}(f mu-ge(f;n))) \mwedge{} (\mforall{}[i:\{n..mu-ge(f;n)\msupminus{}\}]. (\mneg{}\muparrow{}(f i)))\})))
By
Latex:
TACTIC:(Auto THEN ExRepD THEN Auto')
Home
Index