Step
*
1
1
2
of Lemma
mu-ge-property2
1. n : ℤ
2. [P] : {n...} ⟶ ℙ
3. d : ∀n:{n...}. Dec(P[n])
4. [%] : ∃m:{n...}. P[m]
5. λi.isl(d i) ∈ {n...} ⟶ 𝔹
6. ∀i:{n...}. (↑isl(d i)
⇐⇒ P[i])
7. ↓∃m:{n...}. (↑isl(d m))
8. mu-ge(d;n) ∈ {n...}
9. (↑isl(d mu-ge(d;n))) ∧ (∀[i:{n..mu-ge(d;n)-}]. (¬↑isl(d i)))
⊢ {P[mu-ge(d;n)] ∧ (∀[i:{n..mu-ge(d;n)-}]. (¬P[i]))}
BY
{ TACTIC:(Unfold `guard` 0 THEN ParallelLast) }
1
1. n : ℤ
2. [P] : {n...} ⟶ ℙ
3. d : ∀n:{n...}. Dec(P[n])
4. [%] : ∃m:{n...}. P[m]
5. λi.isl(d i) ∈ {n...} ⟶ 𝔹
6. ∀i:{n...}. (↑isl(d i)
⇐⇒ P[i])
7. ↓∃m:{n...}. (↑isl(d m))
8. mu-ge(d;n) ∈ {n...}
9. ∀[i:{n..mu-ge(d;n)-}]. (¬↑isl(d i))
10. ↑isl(d mu-ge(d;n))
⊢ P[mu-ge(d;n)]
2
1. n : ℤ
2. [P] : {n...} ⟶ ℙ
3. d : ∀n:{n...}. Dec(P[n])
4. [%] : ∃m:{n...}. P[m]
5. λi.isl(d i) ∈ {n...} ⟶ 𝔹
6. ∀i:{n...}. (↑isl(d i)
⇐⇒ P[i])
7. ↓∃m:{n...}. (↑isl(d m))
8. mu-ge(d;n) ∈ {n...}
9. ↑isl(d mu-ge(d;n))
10. ∀[i:{n..mu-ge(d;n)-}]. (¬↑isl(d i))
⊢ ∀[i:{n..mu-ge(d;n)-}]. (¬P[i])
Latex:
Latex:
1. n : \mBbbZ{}
2. [P] : \{n...\} {}\mrightarrow{} \mBbbP{}
3. d : \mforall{}n:\{n...\}. Dec(P[n])
4. [\%] : \mexists{}m:\{n...\}. P[m]
5. \mlambda{}i.isl(d i) \mmember{} \{n...\} {}\mrightarrow{} \mBbbB{}
6. \mforall{}i:\{n...\}. (\muparrow{}isl(d i) \mLeftarrow{}{}\mRightarrow{} P[i])
7. \mdownarrow{}\mexists{}m:\{n...\}. (\muparrow{}isl(d m))
8. mu-ge(d;n) \mmember{} \{n...\}
9. (\muparrow{}isl(d mu-ge(d;n))) \mwedge{} (\mforall{}[i:\{n..mu-ge(d;n)\msupminus{}\}]. (\mneg{}\muparrow{}isl(d i)))
\mvdash{} \{P[mu-ge(d;n)] \mwedge{} (\mforall{}[i:\{n..mu-ge(d;n)\msupminus{}\}]. (\mneg{}P[i]))\}
By
Latex:
TACTIC:(Unfold `guard` 0 THEN ParallelLast)
Home
Index