Nuprl Lemma : add-polynom-int-val-sq

[n:ℕ]. ∀[l:{l:ℤ List| ||l|| n ∈ ℤ]. ∀[p,q:polyform(n)]. ∀[rmz:𝔹].  (l@add-polynom(n;rmz;p;q) l@p l@q)


Proof




Definitions occuring in Statement :  add-polynom: add-polynom(n;rmz;p;q) poly-int-val: l@p polyform: polyform(n) length: ||as|| list: List nat: bool: 𝔹 uall: [x:A]. B[x] set: {x:A| B[x]}  add: m int: sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  subtype_base_sq int_subtype_base add-polynom-int-val bool_wf polyform_wf list_wf istype-int length_wf_nat set_subtype_base le_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis hypothesisEquality dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination axiomSqEquality Error :universeIsType,  sqequalRule Error :isect_memberEquality_alt,  because_Cache Error :inhabitedIsType,  Error :setIsType,  Error :equalityIsType4,  applyEquality Error :lambdaEquality_alt,  natural_numberEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[l:\{l:\mBbbZ{}  List|  ||l||  =  n\}  ].  \mforall{}[p,q:polyform(n)].  \mforall{}[rmz:\mBbbB{}].
    (l@add-polynom(n;rmz;p;q)  \msim{}  l@p  +  l@q)



Date html generated: 2019_06_20-PM-01_52_21
Last ObjectModification: 2018_10_04-PM-00_15_06

Theory : integer!polynomials


Home Index