Step
*
2
1
1
2
1
of Lemma
minus-polynom_wf2
1. n : ℤ
2. n ≠ 0
3. 0 < n
4. ∀[p:polynom(n - 1)]. (minus-polynom(n - 1;p) ∈ polynom(n - 1))
5. p : polynom(n - 1) List
6. 0 < n
7. 0 < ||p||
8. ¬↑poly-zero(n - 1;hd(p))
⊢ ¬↑poly-zero(n - 1;hd(map(λq.minus-polynom(n - 1;q);p)))
BY
{ (((RWO  "hd-map" 0 THENA Auto) THEN Reduce 0) THEN AutoSplit) }
1
1. n : ℤ
2. n ≠ 0
3. 0 < n
4. ∀[p:polynom(n - 1)]. (minus-polynom(n - 1;p) ∈ polynom(n - 1))
5. p : polynom(n - 1) List
6. ¬(p = [] ∈ (polynom(n - 1) List))
7. 0 < n
8. 0 < ||p||
9. ¬↑poly-zero(n - 1;hd(p))
⊢ ¬↑poly-zero(n - 1;minus-polynom(n - 1;hd(p)))
Latex:
Latex:
1.  n  :  \mBbbZ{}
2.  n  \mneq{}  0
3.  0  <  n
4.  \mforall{}[p:polynom(n  -  1)].  (minus-polynom(n  -  1;p)  \mmember{}  polynom(n  -  1))
5.  p  :  polynom(n  -  1)  List
6.  0  <  n
7.  0  <  ||p||
8.  \mneg{}\muparrow{}poly-zero(n  -  1;hd(p))
\mvdash{}  \mneg{}\muparrow{}poly-zero(n  -  1;hd(map(\mlambda{}q.minus-polynom(n  -  1;q);p)))
By
Latex:
(((RWO    "hd-map"  0  THENA  Auto)  THEN  Reduce  0)  THEN  AutoSplit)
Home
Index