Nuprl Lemma : minus-polynom_wf2

[n:ℕ]. ∀[p:polynom(n)].  (minus-polynom(n;p) ∈ polynom(n))


Proof




Definitions occuring in Statement :  minus-polynom: minus-polynom(n;p) polynom: polynom(n) nat: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: polynom: polynom(n) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt minus-polynom: minus-polynom(n;p) decidable: Dec(P) or: P ∨ Q bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  polyform-lead-nonzero: polyform-lead-nonzero(n;p) subtype_rel: A ⊆B rev_implies:  Q iff: ⇐⇒ Q squash: T less_than: a < b less_than': less_than'(a;b) le: A ≤ B poly-zero: poly-zero(n;p) polyform: polyform(n)
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than polynom_wf decidable__le intformnot_wf int_formula_prop_not_lemma istype-le subtract-1-ge-0 eq_int_wf eqtt_to_assert assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma eqff_to_assert bool_cases_sqequal subtype_base_sq bool_wf bool_subtype_base assert-bnot neg_assert_of_eq_int istype-nat map-rev_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma value-type-polynom polyform-lead-nonzero_wf map-rev-sq-map le_wf length-map length_wf hd-map subtype_rel_list top_wf null_wf assert_of_null length_of_nil_lemma iff_weakening_uiff assert_wf equal-wf-T-base list_wf polynom_subtype_polyform hd_wf poly-zero_wf not_wf bnot_wf int_subtype_base int_term_value_minus_lemma itermMinus_wf decidable__equal_int iff_imp_equal_bool equal-wf-base nat_wf istype-false polyform_wf less_than_wf uiff_transitivity iff_transitivity assert_of_bnot trivial-equal null-map polyform-value-type minus-polynom_wf assert_functionality_wrt_uiff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination Error :lambdaFormation_alt,  natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :isectIsTypeImplies,  Error :inhabitedIsType,  Error :functionIsTypeImplies,  Error :dependent_set_memberEquality_alt,  unionElimination because_Cache equalityElimination productElimination Error :equalityIstype,  promote_hyp instantiate cumulativity minusEquality int_eqReduceTrueSq int_eqReduceFalseSq applyEquality applyLambdaEquality baseClosed sqequalBase imageElimination Error :equalityIsType1,  Error :equalityIsType2,  closedConclusion baseApply Error :equalityIsType4,  intEquality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:polynom(n)].    (minus-polynom(n;p)  \mmember{}  polynom(n))



Date html generated: 2019_06_20-PM-01_52_56
Last ObjectModification: 2018_12_30-PM-10_14_55

Theory : integer!polynomials


Home Index