Nuprl Lemma : hd-map

[f:Top]. ∀[L:Top List].  (hd(map(f;L)) if null(L) then ⊥ else hd(L) fi )


Proof




Definitions occuring in Statement :  hd: hd(l) null: null(as) map: map(f;as) list: List bottom: ifthenelse: if then else fi  uall: [x:A]. B[x] top: Top apply: a sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top all: x:A. B[x] or: P ∨ Q cons: [a b] select: L[n] uimplies: supposing a nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] ifthenelse: if then else fi  btrue: tt int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: nat_plus: + less_than: a < b squash: T true: True guard: {T} decidable: Dec(P) uiff: uiff(P;Q) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bool: 𝔹 unit: Unit bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b
Lemmas referenced :  select0 list_wf top_wf list-cases product_subtype_list map_nil_lemma null_nil_lemma stuck-spread base_wf select-map cons_wf length_of_cons_lemma false_wf add_nat_plus length_wf_nat less_than_wf nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf lelt_wf length_wf null_wf bool_wf eqtt_to_assert assert_of_null btrue_wf and_wf null_cons_lemma bfalse_wf btrue_neq_bfalse eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis sqequalAxiom hypothesisEquality because_Cache dependent_functionElimination unionElimination promote_hyp hypothesis_subsumption productElimination baseClosed independent_isectElimination lambdaFormation dependent_set_memberEquality natural_numberEquality independent_pairFormation imageMemberEquality equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename pointwiseFunctionality baseApply closedConclusion dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll independent_functionElimination addEquality equalityElimination instantiate cumulativity

Latex:
\mforall{}[f:Top].  \mforall{}[L:Top  List].    (hd(map(f;L))  \msim{}  if  null(L)  then  \mbot{}  else  f  hd(L)  fi  )



Date html generated: 2017_04_14-AM-09_26_41
Last ObjectModification: 2017_02_27-PM-04_00_39

Theory : list_1


Home Index