Nuprl Lemma : polyform-lead-nonzero_wf

[n:ℕ]. ∀[p:polyform(n)].  (polyform-lead-nonzero(n;p) ∈ ℙ)


Proof




Definitions occuring in Statement :  polyform-lead-nonzero: polyform-lead-nonzero(n;p) polyform: polyform(n) nat: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  bfalse: ff rev_implies:  Q iff: ⇐⇒ Q btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) guard: {T} sq_type: SQType(T) squash: T less_than: a < b or: P ∨ Q decidable: Dec(P) and: P ∧ Q top: Top all: x:A. B[x] not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) uimplies: supposing a ge: i ≥  prop: implies:  Q nat: polyform-lead-nonzero: polyform-lead-nonzero(n;p) polyform: polyform(n) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_eq_int eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases le_wf int_term_value_subtract_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermSubtract_wf intformle_wf intformnot_wf decidable__le subtract_wf length_wf equal-wf-T-base bnot_wf hd_wf poly-zero_wf assert_wf not_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf itermConstant_wf intformless_wf intformand_wf satisfiable-full-omega-tt nat_properties less_than_wf eq_int_wf nat_wf polyform_wf
Rules used in proof :  impliesFunctionality lambdaFormation independent_functionElimination cumulativity instantiate productElimination imageElimination unionElimination dependent_set_memberEquality baseClosed computeAll independent_pairFormation voidEquality voidElimination dependent_functionElimination intEquality int_eqEquality lambdaEquality dependent_pairFormation independent_isectElimination functionEquality natural_numberEquality rename setElimination because_Cache isect_memberEquality hypothesisEquality thin isectElimination extract_by_obid equalitySymmetry equalityTransitivity axiomEquality hypothesis sqequalRule sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[p:polyform(n)].    (polyform-lead-nonzero(n;p)  \mmember{}  \mBbbP{})



Date html generated: 2017_04_17-AM-09_02_33
Last ObjectModification: 2017_04_13-PM-00_36_05

Theory : list_1


Home Index