Nuprl Lemma : append-nil-sqle

[t:Top]. (t [] ≤ t)


Proof




Definitions occuring in Statement :  append: as bs nil: [] uall: [x:A]. B[x] top: Top sqle: s ≤ t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nil: [] append: as bs cons: [a b] it: list_ind: list_ind nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: all: x:A. B[x] top: Top decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B le: A ≤ B less_than': less_than'(a;b) true: True nat_plus: + has-value: (a)↓
Lemmas referenced :  int_subtype_base is-exception_wf has-value_wf_base has-value-implies-dec-isaxiom-2 has-value-implies-dec-ispair-2 fun_exp_unroll_1 le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 false_wf subtract_wf decidable__le bottom-sqle strictness-apply fun_exp0_lemma top_wf less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule fixpointLeast thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination axiomSqleEquality isect_memberEquality voidEquality unionElimination independent_pairFormation productElimination addEquality applyEquality intEquality minusEquality because_Cache dependent_set_memberEquality sqleRule divergentSqle callbyvalueCallbyvalue callbyvalueReduce sqleReflexivity baseClosed callbyvalueExceptionCases exceptionSqequal baseApply closedConclusion

Latex:
\mforall{}[t:Top].  (t  @  []  \mleq{}  t)



Date html generated: 2016_05_14-AM-06_31_10
Last ObjectModification: 2016_01_14-PM-08_25_18

Theory : list_0


Home Index