Nuprl Lemma : evalall-append-implies-list-base

[a,b:Base].  a ∈ Base List supposing (evalall(a b))↓


Proof




Definitions occuring in Statement :  append: as bs list: List has-value: (a)↓ evalall: evalall(t) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T base: Base
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a evalall: evalall(t) nat: implies:  Q false: False ge: i ≥  guard: {T} prop: all: x:A. B[x] subtype_rel: A ⊆B top: Top not: ¬A decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m le: A ≤ B less_than': less_than'(a;b) true: True nat_plus: + has-value: (a)↓ append: as bs list_ind: list_ind cons: [a b] so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] it: nil: []
Lemmas referenced :  nil_wf list_ind_nil_lemma has-value-implies-dec-isaxiom-2 cons_wf top_wf spread_cons_lemma list_ind_cons_lemma has-value-implies-dec-ispair-2 fun_exp_unroll_1 le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 false_wf subtract_wf decidable__le bottom_diverge strictness-apply fun_exp0_lemma base_wf int_subtype_base has-value_wf_base less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule hypothesis compactness thin lemma_by_obid isectElimination hypothesisEquality setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry baseApply closedConclusion baseClosed applyEquality isect_memberEquality voidEquality unionElimination independent_pairFormation productElimination addEquality intEquality minusEquality because_Cache dependent_set_memberEquality callbyvalueCallbyvalue callbyvalueReduce

Latex:
\mforall{}[a,b:Base].    a  \mmember{}  Base  List  supposing  (evalall(a  @  b))\mdownarrow{}



Date html generated: 2016_05_14-AM-06_31_32
Last ObjectModification: 2016_01_14-PM-08_26_30

Theory : list_0


Home Index