Nuprl Lemma : hd-reverse-is-last

[T:Type]. ∀[L:T List].  hd(rev(L)) last(L) ∈ supposing 0 < ||L||


Proof




Definitions occuring in Statement :  last: last(L) hd: hd(l) length: ||as|| reverse: rev(as) list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a last: last(L) int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: top: Top subtract: m squash: T cand: c∧ B all: x:A. B[x] decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtype_rel: A ⊆B true: True
Lemmas referenced :  list_wf le-add-cancel-alt zero-mul add-mul-special not-lt-2 decidable__lt le-add-cancel add_functionality_wrt_le add-swap minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-le-2 subtract_wf decidable__le less_than_wf le_wf and_wf squash_wf select_wf add-commutes add-zero add-associates minus-zero select0 reverse_wf length_wf lelt_wf length-reverse false_wf select-reverse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality natural_numberEquality independent_pairFormation sqequalRule lambdaFormation hypothesis isect_memberEquality voidElimination voidEquality minusEquality because_Cache addEquality equalityTransitivity equalitySymmetry applyEquality lambdaEquality imageElimination productElimination independent_isectElimination intEquality dependent_functionElimination unionElimination independent_functionElimination imageMemberEquality baseClosed axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    hd(rev(L))  =  last(L)  supposing  0  <  ||L||



Date html generated: 2016_05_14-AM-06_41_31
Last ObjectModification: 2016_01_14-PM-08_19_46

Theory : list_0


Home Index