Nuprl Lemma : select-reverse

[T:Type]. ∀[L:T List]. ∀[i:ℕ||rev(L)||].  (rev(L)[i] L[||L|| i] ∈ T)


Proof




Definitions occuring in Statement :  select: L[n] length: ||as|| reverse: rev(as) list: List int_seg: {i..j-} uall: [x:A]. B[x] subtract: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T reverse: rev(as) top: Top squash: T prop: int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than: a < b uimplies: supposing a all: x:A. B[x] implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False not: ¬A select: L[n] nil: [] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtract: m nat_plus: + less_than': less_than'(a;b) decidable: Dec(P)
Lemmas referenced :  length-reverse equal_wf squash_wf true_wf select-rev-append nil_wf length-nil add-zero length_wf lelt_wf select_wf subtract_wf non_neg_length length_wf_nat nat_wf set_subtype_base le_wf int_subtype_base iff_weakening_equal lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf stuck-spread base_wf int_seg_wf reverse_wf add-associates minus-one-mul add-swap add-commutes less-iff-le add_functionality_wrt_le le_reflexive minus-one-mul-top one-mul add-mul-special two-mul mul-distributes-right zero-mul not-le-2 minus-zero zero-add omega-shadow mul-distributes mul-associates le-add-cancel not-lt-2 minus-add minus-minus int_seg_properties nat_properties decidable__le decidable__lt
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution sqequalRule extract_by_obid isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis applyEquality lambdaEquality imageElimination hypothesisEquality equalityTransitivity equalitySymmetry because_Cache cumulativity setElimination rename dependent_set_memberEquality productElimination independent_pairFormation addEquality natural_numberEquality independent_isectElimination lambdaFormation dependent_pairFormation sqequalIntensionalEquality intEquality dependent_functionElimination independent_functionElimination promote_hyp imageMemberEquality baseClosed universeEquality unionElimination equalityElimination instantiate axiomEquality multiplyEquality minusEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[i:\mBbbN{}||rev(L)||].    (rev(L)[i]  =  L[||L||  -  1  -  i])



Date html generated: 2017_04_14-AM-08_40_31
Last ObjectModification: 2017_02_27-PM-03_31_04

Theory : list_0


Home Index