Nuprl Lemma : select-reverse
∀[T:Type]. ∀[L:T List]. ∀[i:ℕ||rev(L)||].  (rev(L)[i] = L[||L|| - 1 - i] ∈ T)
Proof
Definitions occuring in Statement : 
select: L[n]
, 
length: ||as||
, 
reverse: rev(as)
, 
list: T List
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
subtract: n - m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
reverse: rev(as)
, 
top: Top
, 
squash: ↓T
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than: a < b
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
select: L[n]
, 
nil: []
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
subtract: n - m
, 
nat_plus: ℕ+
, 
less_than': less_than'(a;b)
, 
decidable: Dec(P)
Lemmas referenced : 
length-reverse, 
equal_wf, 
squash_wf, 
true_wf, 
select-rev-append, 
nil_wf, 
length-nil, 
add-zero, 
length_wf, 
lelt_wf, 
select_wf, 
subtract_wf, 
non_neg_length, 
length_wf_nat, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
iff_weakening_equal, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
stuck-spread, 
base_wf, 
int_seg_wf, 
reverse_wf, 
add-associates, 
minus-one-mul, 
add-swap, 
add-commutes, 
less-iff-le, 
add_functionality_wrt_le, 
le_reflexive, 
minus-one-mul-top, 
one-mul, 
add-mul-special, 
two-mul, 
mul-distributes-right, 
zero-mul, 
not-le-2, 
minus-zero, 
zero-add, 
omega-shadow, 
mul-distributes, 
mul-associates, 
le-add-cancel, 
not-lt-2, 
minus-add, 
minus-minus, 
int_seg_properties, 
nat_properties, 
decidable__le, 
decidable__lt
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
sqequalRule, 
extract_by_obid, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
imageElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
cumulativity, 
setElimination, 
rename, 
dependent_set_memberEquality, 
productElimination, 
independent_pairFormation, 
addEquality, 
natural_numberEquality, 
independent_isectElimination, 
lambdaFormation, 
dependent_pairFormation, 
sqequalIntensionalEquality, 
intEquality, 
dependent_functionElimination, 
independent_functionElimination, 
promote_hyp, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
unionElimination, 
equalityElimination, 
instantiate, 
axiomEquality, 
multiplyEquality, 
minusEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[i:\mBbbN{}||rev(L)||].    (rev(L)[i]  =  L[||L||  -  1  -  i])
Date html generated:
2017_04_14-AM-08_40_31
Last ObjectModification:
2017_02_27-PM-03_31_04
Theory : list_0
Home
Index