Nuprl Lemma : length-map2
∀[T:Type]
  ∀[A,B:Type]. ∀[f:A ⟶ B ⟶ T]. ∀[as:A List]. ∀[bs:B List].
    ||map2(f;as;bs)|| = ||as|| ∈ ℤ supposing ||as|| = ||bs|| ∈ ℤ 
  supposing value-type(T)
Proof
Definitions occuring in Statement : 
map2: map2(f;as;bs)
, 
length: ||as||
, 
list: T List
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
map2: map2(f;as;bs)
, 
nil: []
, 
it: ⋅
, 
all: ∀x:A. B[x]
, 
top: Top
, 
cons: [a / b]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
has-value: (a)↓
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
subtract: n - m
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
squash: ↓T
Lemmas referenced : 
list_induction, 
uall_wf, 
list_wf, 
isect_wf, 
equal_wf, 
length_wf, 
map2_wf, 
equal-wf-base-T, 
equal-wf-T-base, 
nil_wf, 
length_of_nil_lemma, 
equal-wf-base, 
length_of_cons_lemma, 
cons_wf, 
spread_cons_lemma, 
value-type_wf, 
value-type-has-value, 
list-value-type, 
decidable__equal_int, 
false_wf, 
not-equal-2, 
le_antisymmetry_iff, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
zero-add, 
add-commutes, 
add_functionality_wrt_le, 
le-add-cancel2, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
intEquality, 
because_Cache, 
independent_isectElimination, 
functionExtensionality, 
applyEquality, 
independent_functionElimination, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
rename, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
addEquality, 
natural_numberEquality, 
axiomEquality, 
functionEquality, 
universeEquality, 
callbyvalueReduce, 
unionElimination, 
independent_pairFormation, 
productElimination, 
minusEquality, 
imageElimination, 
imageMemberEquality
Latex:
\mforall{}[T:Type]
    \mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  T].  \mforall{}[as:A  List].  \mforall{}[bs:B  List].
        ||map2(f;as;bs)||  =  ||as||  supposing  ||as||  =  ||bs|| 
    supposing  value-type(T)
Date html generated:
2017_04_14-AM-08_48_53
Last ObjectModification:
2017_02_27-PM-03_34_52
Theory : list_0
Home
Index