Nuprl Lemma : length_one

[T:Type]. ∀L:T List. uiff(||L|| 1 ∈ ℤ;∃x:T. (L [x] ∈ (T List)))


Proof




Definitions occuring in Statement :  length: ||as|| cons: [a b] nil: [] list: List uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a member: t ∈ T or: P ∨ Q sq_type: SQType(T) implies:  Q guard: {T} true: True false: False cons: [a b] top: Top exists: x:A. B[x] prop: subtype_rel: A ⊆B nat: squash: T subtract: m sq_stable: SqStable(P) le: A ≤ B not: ¬A less_than': less_than'(a;b) so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥ 
Lemmas referenced :  list-cases length_of_nil_lemma subtype_base_sq int_subtype_base product_subtype_list length_of_cons_lemma cons_wf nil_wf equal_wf list_wf length_wf_nat nat_wf subtype_rel-equal base_wf le_antisymmetry_iff length_wf condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates add-commutes sq_stable__le add_functionality_wrt_le zero-add le-add-cancel2 equal-wf-T-base exists_wf subtract_wf nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut introduction axiomEquality hypothesis thin rename hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination dependent_functionElimination unionElimination sqequalRule instantiate cumulativity intEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination natural_numberEquality voidElimination promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidEquality dependent_pairFormation because_Cache sqequalIntensionalEquality applyEquality applyLambdaEquality setElimination imageMemberEquality baseClosed addEquality lambdaEquality minusEquality imageElimination dependent_set_memberEquality hyp_replacement universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  uiff(||L||  =  1;\mexists{}x:T.  (L  =  [x]))



Date html generated: 2017_04_14-AM-08_35_38
Last ObjectModification: 2017_02_27-PM-03_28_05

Theory : list_0


Home Index