Step
*
1
1
2
of Lemma
list-functionality-induction
1. T : Type
2. A : Type
3. F : Base
4. F[[]] ∈ A
5. ∀a1,a2,L1,L2:Base. ((a1 = a2 ∈ T)
⇒ (F[L1] = F[L2] ∈ A)
⇒ (F[[a1 / L1]] = F[[a2 / L2]] ∈ A))
6. n : ℤ
7. 0 < n
8. ∀L,L2:Base. ((L = L2 ∈ (T List))
⇒ (colength(L) = (n - 1) ∈ ℤ)
⇒ (F[L] = F[L2] ∈ A))
9. L : Base
10. L2 : Base
11. L = L2 ∈ (T List)
12. colength(L) = n ∈ ℤ
13. colength(L) = colength(L2) ∈ ℕ
⊢ F[L] = F[L2] ∈ A
BY
{ (((InstLemma `colength-positive2` [⌜T⌝;⌜L⌝;⌜n⌝]⋅ THENM (SplitAndHyps THEN HypSubst' (-1) 0)) THENA Auto)
THEN ((InstLemma `colength-positive2` [⌜T⌝;⌜L2⌝;⌜n⌝]⋅ THENM (SplitAndHyps THEN HypSubst' (-1) 0)) THENA Auto)
) }
1
1. T : Type
2. A : Type
3. F : Base
4. F[[]] ∈ A
5. ∀a1,a2,L1,L2:Base. ((a1 = a2 ∈ T)
⇒ (F[L1] = F[L2] ∈ A)
⇒ (F[[a1 / L1]] = F[[a2 / L2]] ∈ A))
6. n : ℤ
7. 0 < n
8. ∀L,L2:Base. ((L = L2 ∈ (T List))
⇒ (colength(L) = (n - 1) ∈ ℤ)
⇒ (F[L] = F[L2] ∈ A))
9. L : Base
10. L2 : Base
11. L = L2 ∈ (T List)
12. colength(L) = n ∈ ℤ
13. colength(L) = colength(L2) ∈ ℕ
14. fst(L) ∈ T
15. snd(L) ∈ T List
16. colength(L) = (1 + colength(snd(L))) ∈ ℤ
17. L ~ [fst(L) / (snd(L))]
18. fst(L2) ∈ T
19. snd(L2) ∈ T List
20. colength(L2) = (1 + colength(snd(L2))) ∈ ℤ
21. L2 ~ [fst(L2) / (snd(L2))]
⊢ F[[fst(L) / (snd(L))]] = F[[fst(L2) / (snd(L2))]] ∈ A
Latex:
Latex:
1. T : Type
2. A : Type
3. F : Base
4. F[[]] \mmember{} A
5. \mforall{}a1,a2,L1,L2:Base. ((a1 = a2) {}\mRightarrow{} (F[L1] = F[L2]) {}\mRightarrow{} (F[[a1 / L1]] = F[[a2 / L2]]))
6. n : \mBbbZ{}
7. 0 < n
8. \mforall{}L,L2:Base. ((L = L2) {}\mRightarrow{} (colength(L) = (n - 1)) {}\mRightarrow{} (F[L] = F[L2]))
9. L : Base
10. L2 : Base
11. L = L2
12. colength(L) = n
13. colength(L) = colength(L2)
\mvdash{} F[L] = F[L2]
By
Latex:
(((InstLemma `colength-positive2` [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}L\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{}]\mcdot{} THENM (SplitAndHyps THEN HypSubst' (-1) 0))
THENA Auto
)
THEN ((InstLemma `colength-positive2` [\mkleeneopen{}T\mkleeneclose{};\mkleeneopen{}L2\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{}]\mcdot{} THENM (SplitAndHyps THEN HypSubst' (-1) 0))
THENA Auto
)
)
Home
Index