Nuprl Lemma : list_eq_wf

[A:Type]. ∀[eq:A ⟶ A ⟶ 𝔹]. ∀[as,bs:A List].  (list_eq(eq;as;bs) ∈ 𝔹)


Proof




Definitions occuring in Statement :  list_eq: list_eq(eq;as;bs) list: List bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  guard: {T} uimplies: supposing a prop: subtype_rel: A ⊆B or: P ∨ Q list_eq: list_eq(eq;as;bs) ifthenelse: if then else fi  btrue: tt cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) squash: T sq_stable: SqStable(P) uiff: uiff(P;Q) and: P ∧ Q le: A ≤ B not: ¬A less_than': less_than'(a;b) true: True decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtract: m less_than: a < b bfalse: ff bnot: ¬bb band: p ∧b q
Lemmas referenced :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-T-base nat_wf colength_wf_list int_subtype_base list-cases null_nil_lemma btrue_wf product_subtype_list spread_cons_lemma equal_wf subtype_base_sq set_subtype_base le_wf null_cons_lemma bfalse_wf sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul minus-one-mul-top add-commutes subtract_wf not-ge-2 less-iff-le minus-minus add-swap band_wf list_wf bool_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename sqequalRule intWeakElimination natural_numberEquality independent_isectElimination independent_functionElimination voidElimination lambdaEquality dependent_functionElimination isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry because_Cache applyEquality unionElimination promote_hyp hypothesis_subsumption productElimination voidEquality baseClosed instantiate cumulativity intEquality applyLambdaEquality imageMemberEquality imageElimination addEquality dependent_set_memberEquality independent_pairFormation minusEquality functionEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[eq:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[as,bs:A  List].    (list\_eq(eq;as;bs)  \mmember{}  \mBbbB{})



Date html generated: 2018_05_21-PM-00_20_01
Last ObjectModification: 2018_05_19-AM-07_00_15

Theory : list_0


Home Index