Nuprl Lemma : list_ind-general-wf
∀[A:Type]. ∀[B:(A List) ⟶ ℙ]. ∀[x:B[[]]]. ∀[F:∀a:A. ∀L:A List.  (B[L] 
⇒ B[[a / L]])]. ∀[L:A List].
  (rec-case(L) of
   [] => x
   h::t =>
    r.F[h;t;r] ∈ B[L])
Proof
Definitions occuring in Statement : 
list_ind: list_ind, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2;s3]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
nat: ℕ
, 
false: False
, 
ge: i ≥ j 
, 
guard: {T}
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
true: True
, 
pi1: fst(t)
, 
nil: []
, 
cons: [a / b]
, 
pi2: snd(t)
, 
sq_type: SQType(T)
Lemmas referenced : 
list_wf, 
all_wf, 
cons_wf, 
nil_wf, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
equal-wf-T-base, 
colength_wf_list, 
colength-zero, 
subtype_rel_list, 
top_wf, 
list_ind_nil_lemma, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
colength-positive2, 
le_weakening2, 
le_wf, 
list_ind_cons_lemma, 
list-cases, 
product_subtype_list, 
subtype_base_sq, 
int_subtype_base, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
sqequalHypSubstitution, 
dependent_functionElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
sqequalRule, 
axiomEquality, 
extract_by_obid, 
isectElimination, 
cumulativity, 
isect_memberEquality, 
because_Cache, 
lambdaEquality, 
functionEquality, 
applyEquality, 
functionExtensionality, 
universeEquality, 
lambdaFormation, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
intEquality, 
voidEquality, 
baseClosed, 
unionElimination, 
independent_pairFormation, 
productElimination, 
addEquality, 
minusEquality, 
dependent_set_memberEquality, 
promote_hyp, 
hypothesis_subsumption, 
instantiate
Latex:
\mforall{}[A:Type].  \mforall{}[B:(A  List)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[x:B[[]]].  \mforall{}[F:\mforall{}a:A.  \mforall{}L:A  List.    (B[L]  {}\mRightarrow{}  B[[a  /  L]])].  \mforall{}[L:A  List].
    (rec-case(L)  of
      []  =>  x
      h::t  =>
        r.F[h;t;r]  \mmember{}  B[L])
Date html generated:
2017_04_14-AM-07_54_41
Last ObjectModification:
2017_02_27-PM-03_21_30
Theory : list_0
Home
Index