Nuprl Lemma : member_tl

[T:Type]. ∀as:T List. ∀x:T.  (x ∈ tl(as))  (x ∈ as) supposing 0 < ||as||


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) length: ||as|| tl: tl(l) list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] implies:  Q natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B squash: T prop: nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q not: ¬A rev_implies:  Q false: False uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B top: Top le: A ≤ B less_than': less_than'(a;b) true: True guard: {T} sq_stable: SqStable(P) int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  member-less_than length_wf less_than_wf squash_wf true_wf length_tl decidable__le false_wf not-ge-2 less-iff-le condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates zero-add add-commutes add_functionality_wrt_le add-zero le-add-cancel2 iff_weakening_equal not-le-2 sq_stable__le le-add-cancel le_wf decidable__lt not-lt-2 subtract_wf equal_wf select_tl lelt_wf select_wf l_member_wf tl_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality cumulativity hypothesisEquality hypothesis independent_isectElimination rename productElimination applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry intEquality setElimination because_Cache dependent_functionElimination unionElimination independent_pairFormation voidElimination independent_functionElimination addEquality sqequalRule isect_memberEquality voidEquality minusEquality imageMemberEquality baseClosed universeEquality dependent_pairFormation dependent_set_memberEquality productEquality

Latex:
\mforall{}[T:Type].  \mforall{}as:T  List.  \mforall{}x:T.    (x  \mmember{}  tl(as))  {}\mRightarrow{}  (x  \mmember{}  as)  supposing  0  <  ||as||



Date html generated: 2017_04_14-AM-08_39_22
Last ObjectModification: 2017_02_27-PM-03_29_48

Theory : list_0


Home Index