Nuprl Lemma : merge-int-1-1
∀[T:Type]
  ∀[cs,as,bs:T List].
    (as = bs ∈ (T List)) supposing ((merge-int(as;cs) = merge-int(bs;cs) ∈ (T List)) and sorted(bs) and sorted(as)) 
  supposing T ⊆r ℤ
Proof
Definitions occuring in Statement : 
sorted: sorted(L)
, 
merge-int: merge-int(as;bs)
, 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
merge-int: merge-int(as;bs)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
guard: {T}
Lemmas referenced : 
list_induction, 
uall_wf, 
list_wf, 
isect_wf, 
sorted_wf, 
equal_wf, 
merge-int_wf, 
reduce_nil_lemma, 
reduce_cons_lemma, 
insert-int_wf, 
subtype_rel_wf, 
insert-int-1-1, 
merge-int-sorted
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
rename, 
intEquality, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}[cs,as,bs:T  List].
        (as  =  bs)  supposing  ((merge-int(as;cs)  =  merge-int(bs;cs))  and  sorted(bs)  and  sorted(as)) 
    supposing  T  \msubseteq{}r  \mBbbZ{}
Date html generated:
2017_04_14-AM-08_49_48
Last ObjectModification:
2017_02_27-PM-03_35_39
Theory : list_0
Home
Index