Nuprl Lemma : non_nil_length

[T:Type]. ∀[L:T List].  0 < ||L|| supposing ¬(L [] ∈ (T List))


Proof




Definitions occuring in Statement :  length: ||as|| nil: [] list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] not: ¬A natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] or: P ∨ Q not: ¬A implies:  Q false: False cons: [a b] top: Top guard: {T} nat: le: A ≤ B and: P ∧ Q decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q prop: uiff: uiff(P;Q) subtract: m subtype_rel: A ⊆B less_than': less_than'(a;b) true: True
Lemmas referenced :  list-cases length_of_nil_lemma nil_wf product_subtype_list length_of_cons_lemma length_wf_nat nat_wf decidable__lt false_wf not-lt-2 condition-implies-le minus-add minus-one-mul zero-add minus-one-mul-top add-commutes add_functionality_wrt_le add-associates add-zero le-add-cancel equal_wf not_wf equal-wf-T-base list_wf member-less_than length_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination unionElimination sqequalRule independent_functionElimination voidElimination promote_hyp hypothesis_subsumption productElimination isect_memberEquality voidEquality lambdaFormation setElimination rename natural_numberEquality addEquality independent_pairFormation independent_isectElimination applyEquality lambdaEquality intEquality because_Cache minusEquality equalityTransitivity equalitySymmetry baseClosed universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].    0  <  ||L||  supposing  \mneg{}(L  =  [])



Date html generated: 2019_06_20-PM-00_40_01
Last ObjectModification: 2018_09_14-PM-04_24_24

Theory : list_0


Home Index