Nuprl Lemma : strong-continuous-list
∀[F:Type ⟶ Type]. Continuous+(T.F[T] List) supposing Continuous+(T.F[T])
Proof
Definitions occuring in Statement : 
list: T List
, 
strong-type-continuous: Continuous+(T.F[T])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
so_apply: x[s]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
strong-type-continuous: Continuous+(T.F[T])
, 
ext-eq: A ≡ B
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
int_seg: {i..j-}
, 
sq_stable: SqStable(P)
, 
lelt: i ≤ j < k
, 
squash: ↓T
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: Error :satisfiable_int_formula, 
ge: i ≥ j 
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
subtract: n - m
, 
true: True
, 
gt: i > j
Lemmas referenced : 
nat_wf, 
list_wf, 
strong-type-continuous_wf, 
false_wf, 
le_wf, 
nat_properties, 
length_wf_nat, 
equal_wf, 
select_wf, 
sq_stable__le, 
int_seg_wf, 
length_wf, 
Error :int_term_value_subtract_lemma, 
Error :int_formula_prop_not_lemma, 
Error :itermSubtract_wf, 
Error :intformnot_wf, 
subtract_wf, 
decidable__le, 
less_than_wf, 
ge_wf, 
Error :int_formula_prop_wf, 
Error :int_formula_prop_less_lemma, 
Error :int_term_value_var_lemma, 
Error :int_term_value_constant_lemma, 
Error :int_formula_prop_le_lemma, 
Error :int_formula_prop_and_lemma, 
Error :intformless_wf, 
Error :itermVar_wf, 
Error :itermConstant_wf, 
Error :intformle_wf, 
Error :intformand_wf, 
Error :satisfiable-full-omega-tt, 
first0, 
subtype_rel_list, 
top_wf, 
nil_wf, 
decidable__lt, 
firstn_decomp, 
le_weakening2, 
append_wf, 
cons_wf, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
lelt_wf, 
firstn_all, 
not-gt-2, 
not-lt-2, 
le-add-cancel2, 
le_reflexive
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaEquality, 
isectEquality, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
universeEquality, 
isect_memberEquality, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
functionEquality, 
cumulativity, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
dependent_set_memberEquality, 
natural_numberEquality, 
dependent_functionElimination, 
independent_functionElimination, 
setElimination, 
rename, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
computeAll, 
voidEquality, 
voidElimination, 
intEquality, 
int_eqEquality, 
dependent_pairFormation, 
intWeakElimination, 
addEquality, 
minusEquality, 
comment
Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  Continuous+(T.F[T]  List)  supposing  Continuous+(T.F[T])
Date html generated:
2018_05_21-PM-00_20_45
Last ObjectModification:
2017_10_18-PM-00_43_48
Theory : list_0
Home
Index