Nuprl Lemma : strong-continuous-list

[F:Type ⟶ Type]. Continuous+(T.F[T] List) supposing Continuous+(T.F[T])


Proof




Definitions occuring in Statement :  list: List strong-type-continuous: Continuous+(T.F[T]) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a strong-type-continuous: Continuous+(T.F[T]) ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] all: x:A. B[x] nat: le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q int_seg: {i..j-} sq_stable: SqStable(P) lelt: i ≤ j < k squash: T or: P ∨ Q decidable: Dec(P) top: Top exists: x:A. B[x] satisfiable_int_formula: Error :satisfiable_int_formula,  ge: i ≥  guard: {T} iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q) subtract: m true: True gt: i > j
Lemmas referenced :  nat_wf list_wf strong-type-continuous_wf false_wf le_wf nat_properties length_wf_nat equal_wf select_wf sq_stable__le int_seg_wf length_wf Error :int_term_value_subtract_lemma,  Error :int_formula_prop_not_lemma,  Error :itermSubtract_wf,  Error :intformnot_wf,  subtract_wf decidable__le less_than_wf ge_wf Error :int_formula_prop_wf,  Error :int_formula_prop_less_lemma,  Error :int_term_value_var_lemma,  Error :int_term_value_constant_lemma,  Error :int_formula_prop_le_lemma,  Error :int_formula_prop_and_lemma,  Error :intformless_wf,  Error :itermVar_wf,  Error :itermConstant_wf,  Error :intformle_wf,  Error :intformand_wf,  Error :satisfiable-full-omega-tt,  first0 subtype_rel_list top_wf nil_wf decidable__lt firstn_decomp le_weakening2 append_wf cons_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-one-mul-top minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel lelt_wf firstn_all not-gt-2 not-lt-2 le-add-cancel2 le_reflexive
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut independent_pairFormation lambdaEquality isectEquality extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin applyEquality functionExtensionality hypothesisEquality universeEquality isect_memberEquality productElimination independent_pairEquality axiomEquality functionEquality cumulativity because_Cache equalityTransitivity equalitySymmetry lambdaFormation dependent_set_memberEquality natural_numberEquality dependent_functionElimination independent_functionElimination setElimination rename independent_isectElimination imageMemberEquality baseClosed imageElimination unionElimination computeAll voidEquality voidElimination intEquality int_eqEquality dependent_pairFormation intWeakElimination addEquality minusEquality comment

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  Continuous+(T.F[T]  List)  supposing  Continuous+(T.F[T])



Date html generated: 2018_05_21-PM-00_20_45
Last ObjectModification: 2017_10_18-PM-00_43_48

Theory : list_0


Home Index