Nuprl Lemma : accum_list_wf

[T,A:Type]. ∀[base:T ⟶ A]. ∀[f:A ⟶ T ⟶ A]. ∀[L:T List].  accum_list(a,x.f[a;x];x.base[x];L) ∈ supposing 0 < ||L||


Proof




Definitions occuring in Statement :  accum_list: accum_list(a,x.f[a; x];x.base[x];L) length: ||as|| list: List less_than: a < b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a accum_list: accum_list(a,x.f[a; x];x.base[x];L) so_apply: x[s] ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2]
Lemmas referenced :  list_wf less_than_wf int_formula_prop_wf int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt length_wf decidable__le hd_wf tl_wf list_accum_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality because_Cache hypothesis applyEquality independent_isectElimination dependent_functionElimination natural_numberEquality unionElimination imageElimination productElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll axiomEquality equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[base:T  {}\mrightarrow{}  A].  \mforall{}[f:A  {}\mrightarrow{}  T  {}\mrightarrow{}  A].  \mforall{}[L:T  List].
    accum\_list(a,x.f[a;x];x.base[x];L)  \mmember{}  A  supposing  0  <  ||L||



Date html generated: 2016_05_14-AM-07_39_57
Last ObjectModification: 2016_01_15-AM-08_36_23

Theory : list_1


Home Index