Nuprl Lemma : append-cancellation-right

[T:Type]. ∀[as,as',bs,cs:T List].
  (cs bs ∈ (T List)) supposing (((cs as) (bs as') ∈ (T List)) and (||as|| ||as'|| ∈ ℤ))


Proof




Definitions occuring in Statement :  length: ||as|| append: as bs list: List uimplies: supposing a uall: [x:A]. B[x] int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a guard: {T} or: P ∨ Q all: x:A. B[x] decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop:
Lemmas referenced :  append_wf list_wf length_wf equal_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__equal_int general-append-cancellation
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis sqequalRule inrFormation dependent_functionElimination equalityTransitivity equalitySymmetry unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll productElimination axiomEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as,as',bs,cs:T  List].
    (cs  =  bs)  supposing  (((cs  @  as)  =  (bs  @  as'))  and  (||as||  =  ||as'||))



Date html generated: 2016_05_14-AM-07_39_18
Last ObjectModification: 2016_01_15-AM-08_36_43

Theory : list_1


Home Index