Nuprl Lemma : assert-bl-exists2
∀[T:Type]. ∀L:T List. ∀P:{x:T| (x ∈ L)}  ⟶ 𝔹.  (↑(∃x∈L.P[x])_b ⇐⇒ ∃x:T. ((x ∈ L) ∧ (↑P[x])))
Proof
Definitions occuring in Statement : 
bl-exists: (∃x∈L.P[x])_b, 
l_member: (x ∈ l), 
list: T List, 
assert: ↑b, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
rev_implies: P ⇐ Q
Lemmas referenced : 
assert-bl-exists, 
l_exists_iff, 
assert_wf, 
l_member_wf, 
bl-exists_wf, 
exists_wf, 
bool_wf, 
list_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
dependent_functionElimination, 
productElimination, 
independent_pairFormation, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setEquality, 
cumulativity, 
productEquality, 
because_Cache, 
dependent_set_memberEquality, 
promote_hyp, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}.    (\muparrow{}(\mexists{}x\mmember{}L.P[x])\_b  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:T.  ((x  \mmember{}  L)  \mwedge{}  (\muparrow{}P[x])))
 Date html generated: 
2016_05_14-PM-02_10_13
 Last ObjectModification: 
2015_12_26-PM-05_04_40
Theory : list_1
Home
Index