Nuprl Lemma : assert-bl-exists2

[T:Type]. ∀L:T List. ∀P:{x:T| (x ∈ L)}  ⟶ 𝔹.  (↑(∃x∈L.P[x])_b ⇐⇒ ∃x:T. ((x ∈ L) ∧ (↑P[x])))


Proof




Definitions occuring in Statement :  bl-exists: (∃x∈L.P[x])_b l_member: (x ∈ l) list: List assert: b bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] prop: rev_implies:  Q
Lemmas referenced :  assert-bl-exists l_exists_iff assert_wf l_member_wf bl-exists_wf exists_wf bool_wf list_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation dependent_functionElimination productElimination independent_pairFormation independent_functionElimination sqequalRule lambdaEquality applyEquality setEquality cumulativity productEquality because_Cache dependent_set_memberEquality promote_hyp functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}P:\{x:T|  (x  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbB{}.    (\muparrow{}(\mexists{}x\mmember{}L.P[x])\_b  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x:T.  ((x  \mmember{}  L)  \mwedge{}  (\muparrow{}P[x])))



Date html generated: 2016_05_14-PM-02_10_13
Last ObjectModification: 2015_12_26-PM-05_04_40

Theory : list_1


Home Index