Nuprl Lemma : before-map

[T,T':Type].
  ∀f:T ⟶ T'. ∀L:T List. ∀x',y':T'.
    (x' before y' ∈ map(f;L) ⇐⇒ ∃x,y:T. (x before y ∈ L ∧ ((f x) x' ∈ T') ∧ ((f y) y' ∈ T')))


Proof




Definitions occuring in Statement :  l_before: before y ∈ l map: map(f;as) list: List uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  rev_implies:  Q iff: ⇐⇒ Q top: Top implies:  Q so_apply: x[s] and: P ∧ Q exists: x:A. B[x] prop: so_lambda: λ2x.t[x] member: t ∈ T all: x:A. B[x] uall: [x:A]. B[x] false: False or: P ∨ Q cand: c∧ B
Lemmas referenced :  istype-universe map_cons_lemma istype-void map_nil_lemma list_wf equal_wf map_wf l_before_wf iff_wf list_induction nil_wf nil_before cons_wf cons_before l_member_wf member_map
Rules used in proof :  universeEquality instantiate inhabitedIsType equalityIstype productIsType because_Cache functionIsType rename voidElimination isect_memberEquality_alt dependent_functionElimination independent_functionElimination universeIsType applyEquality productEquality hypothesis functionEquality lambdaEquality_alt sqequalRule hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid introduction thin cut lambdaFormation_alt isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution promote_hyp dependent_pairFormation_alt productElimination independent_pairFormation unionIsType unionElimination equalityTransitivity equalitySymmetry inlFormation_alt inrFormation_alt setElimination applyLambdaEquality dependent_set_memberEquality_alt

Latex:
\mforall{}[T,T':Type].
    \mforall{}f:T  {}\mrightarrow{}  T'.  \mforall{}L:T  List.  \mforall{}x',y':T'.
        (x'  before  y'  \mmember{}  map(f;L)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x,y:T.  (x  before  y  \mmember{}  L  \mwedge{}  ((f  x)  =  x')  \mwedge{}  ((f  y)  =  y')))



Date html generated: 2019_10_15-AM-10_21_33
Last ObjectModification: 2019_08_05-PM-02_05_29

Theory : list_1


Home Index