Nuprl Lemma : before-map
∀[T,T':Type].
  ∀f:T ⟶ T'. ∀L:T List. ∀x',y':T'.
    (x' before y' ∈ map(f;L) 
⇐⇒ ∃x,y:T. (x before y ∈ L ∧ ((f x) = x' ∈ T') ∧ ((f y) = y' ∈ T')))
Proof
Definitions occuring in Statement : 
l_before: x before y ∈ l
, 
map: map(f;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
top: Top
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
and: P ∧ Q
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
false: False
, 
or: P ∨ Q
, 
cand: A c∧ B
Lemmas referenced : 
istype-universe, 
map_cons_lemma, 
istype-void, 
map_nil_lemma, 
list_wf, 
equal_wf, 
map_wf, 
l_before_wf, 
iff_wf, 
list_induction, 
nil_wf, 
nil_before, 
cons_wf, 
cons_before, 
l_member_wf, 
member_map
Rules used in proof : 
universeEquality, 
instantiate, 
inhabitedIsType, 
equalityIstype, 
productIsType, 
because_Cache, 
functionIsType, 
rename, 
voidElimination, 
isect_memberEquality_alt, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType, 
applyEquality, 
productEquality, 
hypothesis, 
functionEquality, 
lambdaEquality_alt, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
thin, 
cut, 
lambdaFormation_alt, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
promote_hyp, 
dependent_pairFormation_alt, 
productElimination, 
independent_pairFormation, 
unionIsType, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
inlFormation_alt, 
inrFormation_alt, 
setElimination, 
applyLambdaEquality, 
dependent_set_memberEquality_alt
Latex:
\mforall{}[T,T':Type].
    \mforall{}f:T  {}\mrightarrow{}  T'.  \mforall{}L:T  List.  \mforall{}x',y':T'.
        (x'  before  y'  \mmember{}  map(f;L)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}x,y:T.  (x  before  y  \mmember{}  L  \mwedge{}  ((f  x)  =  x')  \mwedge{}  ((f  y)  =  y')))
Date html generated:
2019_10_15-AM-10_21_33
Last ObjectModification:
2019_08_05-PM-02_05_29
Theory : list_1
Home
Index