Nuprl Lemma : biject-inverse2

[A,B:Type].  ∀f:A ⟶ B. (Bij(A;B;f)  (∃g:B ⟶ A. InvFuns(A;B;f;g)))


Proof




Definitions occuring in Statement :  biject: Bij(A;B;f) inv_funs: InvFuns(A;B;f;g) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T exists: x:A. B[x] and: P ∧ Q inv_funs: InvFuns(A;B;f;g) tidentity: Id{T} identity: Id compose: g squash: T prop: true: True subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  biject-inverse equal_wf squash_wf true_wf iff_weakening_equal inv_funs_wf biject_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination dependent_pairFormation independent_pairFormation sqequalRule applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry because_Cache dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination functionExtensionality cumulativity functionEquality

Latex:
\mforall{}[A,B:Type].    \mforall{}f:A  {}\mrightarrow{}  B.  (Bij(A;B;f)  {}\mRightarrow{}  (\mexists{}g:B  {}\mrightarrow{}  A.  InvFuns(A;B;f;g)))



Date html generated: 2017_04_17-AM-07_47_04
Last ObjectModification: 2017_02_27-PM-04_17_58

Theory : list_1


Home Index