Nuprl Lemma : bl-all-as-accum

[T:Type]. ∀[L:T List]. ∀[P:T ⟶ 𝔹].
  ((∀x∈L.P[x])_b accumulate (with value and list item x):
                    p ∧b P[x]
                   over list:
                     L
                   with starting value:
                    tt))


Proof




Definitions occuring in Statement :  bl-all: (∀x∈L.P[x])_b list_accum: list_accum list: List band: p ∧b q btrue: tt bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a bl-all: (∀x∈L.P[x])_b squash: T prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q rev_implies:  Q uiff: uiff(P;Q) so_lambda: λ2y.t[x; y] bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  bfalse: ff so_apply: x[s1;s2] true: True subtype_rel: A ⊆B guard: {T} sq_type: SQType(T)
Lemmas referenced :  subtype_base_sq bool_wf bool_subtype_base equal_wf squash_wf true_wf reduce-as-accum band_wf iff_imp_equal_bool assert_wf iff_transitivity iff_weakening_uiff assert_of_band iff_wf btrue_wf list_accum_wf eqtt_to_assert iff_weakening_equal list_wf band_commutes
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination applyEquality lambdaEquality imageElimination hypothesisEquality equalityTransitivity equalitySymmetry because_Cache functionExtensionality sqequalRule lambdaFormation independent_pairFormation productElimination productEquality addLevel impliesFunctionality independent_functionElimination unionElimination equalityElimination dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed universeEquality sqequalAxiom functionEquality isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].
    ((\mforall{}x\mmember{}L.P[x])\_b  \msim{}  accumulate  (with  value  p  and  list  item  x):
                                        p  \mwedge{}\msubb{}  P[x]
                                      over  list:
                                          L
                                      with  starting  value:
                                        tt))



Date html generated: 2017_04_17-AM-08_03_18
Last ObjectModification: 2017_02_27-PM-04_33_52

Theory : list_1


Home Index