Nuprl Lemma : bool-cmp-zero

[x,y:𝔹].  uiff((bool-cmp() y) 0 ∈ ℤ;x y)


Proof




Definitions occuring in Statement :  bool-cmp: bool-cmp() bool: 𝔹 uiff: uiff(P;Q) uall: [x:A]. B[x] apply: a natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bool: 𝔹 unit: Unit it: btrue: tt bool-cmp: bool-cmp() ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: bfalse: ff sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} true: True false: False not: ¬A subtype_rel: A ⊆B comparison: comparison(T)
Lemmas referenced :  btrue_wf equal_wf bool_wf subtype_base_sq int_subtype_base btrue_neq_bfalse bfalse_wf bool-cmp_wf comparison_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution unionElimination thin equalityElimination sqequalRule independent_pairFormation lemma_by_obid hypothesis isectElimination intEquality natural_numberEquality instantiate cumulativity independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination promote_hyp productElimination independent_pairEquality isect_memberEquality hypothesisEquality axiomEquality applyEquality because_Cache minusEquality lambdaEquality setElimination rename

Latex:
\mforall{}[x,y:\mBbbB{}].    uiff((bool-cmp()  x  y)  =  0;x  =  y)



Date html generated: 2016_05_14-PM-02_37_00
Last ObjectModification: 2015_12_26-PM-04_18_06

Theory : list_1


Home Index