Nuprl Lemma : bool-cmp_wf

bool-cmp() ∈ comparison(𝔹)


Proof




Definitions occuring in Statement :  bool-cmp: bool-cmp() comparison: comparison(T) bool: 𝔹 member: t ∈ T
Definitions unfolded in proof :  bool-cmp: bool-cmp() member: t ∈ T comparison: comparison(T) uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b so_lambda: λ2x.t[x] so_apply: x[s] true: True le: A ≤ B less_than': less_than'(a;b) not: ¬A
Lemmas referenced :  ifthenelse_wf bool_wf eqtt_to_assert decidable__equal_int satisfiable-full-omega-tt intformnot_wf intformeq_wf itermConstant_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base le_wf all_wf int_subtype_base false_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep dependent_set_memberEquality lambdaEquality cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality intEquality natural_numberEquality hypothesis minusEquality lambdaFormation unionElimination equalityElimination because_Cache productElimination independent_isectElimination dependent_functionElimination dependent_pairFormation isect_memberEquality voidElimination voidEquality computeAll promote_hyp instantiate cumulativity equalityTransitivity equalitySymmetry independent_functionElimination independent_pairFormation baseClosed productEquality applyEquality functionExtensionality functionEquality addLevel levelHypothesis

Latex:
bool-cmp()  \mmember{}  comparison(\mBbbB{})



Date html generated: 2017_04_17-AM-08_26_48
Last ObjectModification: 2017_02_27-PM-04_48_29

Theory : list_1


Home Index