Nuprl Lemma : comparison-connex

[T:Type]. ∀cmp:comparison(T). Connex(T;x,y.0 ≤ (cmp y))


Proof




Definitions occuring in Statement :  comparison: comparison(T) connex: Connex(T;x,y.R[x; y]) uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] apply: a natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] connex: Connex(T;x,y.R[x; y]) comparison: comparison(T) member: t ∈ T and: P ∧ Q implies:  Q sq_stable: SqStable(P) squash: T true: True decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  iff_weakening_equal true_wf squash_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_minus_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_or_lemma int_formula_prop_not_lemma itermVar_wf itermMinus_wf itermConstant_wf intformle_wf intformor_wf intformnot_wf satisfiable-full-omega-tt decidable__le decidable__or sq_stable_from_decidable le_wf or_wf comparison_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution setElimination thin rename hypothesisEquality cut lemma_by_obid dependent_functionElimination hypothesis universeEquality isectElimination natural_numberEquality applyEquality productElimination independent_functionElimination introduction sqequalRule imageMemberEquality baseClosed imageElimination minusEquality because_Cache unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll equalityTransitivity equalitySymmetry

Latex:
\mforall{}[T:Type].  \mforall{}cmp:comparison(T).  Connex(T;x,y.0  \mleq{}  (cmp  x  y))



Date html generated: 2016_05_14-PM-02_38_27
Last ObjectModification: 2016_01_15-AM-07_41_08

Theory : list_1


Home Index