Nuprl Lemma : comparison-reflexive
∀[T:Type]. ∀cmp:comparison(T). ∀x:T.  ((cmp x x) = 0 ∈ ℤ)
Proof
Definitions occuring in Statement : 
comparison: comparison(T)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
comparison: comparison(T)
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
int_formula_prop_wf, 
int_term_value_minus_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermMinus_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__equal_int, 
comparison_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
productElimination, 
hypothesis, 
hypothesisEquality, 
lemma_by_obid, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
axiomEquality, 
because_Cache, 
universeEquality, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
isectElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll
Latex:
\mforall{}[T:Type].  \mforall{}cmp:comparison(T).  \mforall{}x:T.    ((cmp  x  x)  =  0)
Date html generated:
2016_05_14-PM-02_35_52
Last ObjectModification:
2016_01_15-AM-07_42_19
Theory : list_1
Home
Index