Nuprl Lemma : comparison-reflexive

[T:Type]. ∀cmp:comparison(T). ∀x:T.  ((cmp x) 0 ∈ ℤ)


Proof




Definitions occuring in Statement :  comparison: comparison(T) uall: [x:A]. B[x] all: x:A. B[x] apply: a natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] comparison: comparison(T) and: P ∧ Q decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop:
Lemmas referenced :  int_formula_prop_wf int_term_value_minus_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermMinus_wf itermConstant_wf itermVar_wf intformeq_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__equal_int comparison_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution setElimination thin rename productElimination hypothesis hypothesisEquality lemma_by_obid dependent_functionElimination sqequalRule lambdaEquality axiomEquality because_Cache universeEquality unionElimination equalityTransitivity equalitySymmetry isectElimination natural_numberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll

Latex:
\mforall{}[T:Type].  \mforall{}cmp:comparison(T).  \mforall{}x:T.    ((cmp  x  x)  =  0)



Date html generated: 2016_05_14-PM-02_35_52
Last ObjectModification: 2016_01_15-AM-07_42_19

Theory : list_1


Home Index