Nuprl Lemma : cons_functionality_wrt_permutation

[A:Type]. ∀L1,L2:A List. ∀x:A.  (permutation(A;L1;L2)  permutation(A;[x L1];[x L2]))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3] prop: uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  list_ind_cons_lemma list_ind_nil_lemma permutation_wf list_wf append_wf cons_wf nil_wf permutation_weakening permutation_functionality_wrt_permutation append_functionality_wrt_permutation
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalRule cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination hypothesisEquality universeEquality because_Cache independent_isectElimination independent_functionElimination productElimination

Latex:
\mforall{}[A:Type].  \mforall{}L1,L2:A  List.  \mforall{}x:A.    (permutation(A;L1;L2)  {}\mRightarrow{}  permutation(A;[x  /  L1];[x  /  L2]))



Date html generated: 2016_05_14-PM-02_33_38
Last ObjectModification: 2015_12_26-PM-04_21_52

Theory : list_1


Home Index