Nuprl Lemma : cons_functionality_wrt_permutation
∀[A:Type]. ∀L1,L2:A List. ∀x:A.  (permutation(A;L1;L2) 
⇒ permutation(A;[x / L1];[x / L2]))
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
cons: [a / b]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
prop: ℙ
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
permutation_wf, 
list_wf, 
append_wf, 
cons_wf, 
nil_wf, 
permutation_weakening, 
permutation_functionality_wrt_permutation, 
append_functionality_wrt_permutation
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
productElimination
Latex:
\mforall{}[A:Type].  \mforall{}L1,L2:A  List.  \mforall{}x:A.    (permutation(A;L1;L2)  {}\mRightarrow{}  permutation(A;[x  /  L1];[x  /  L2]))
Date html generated:
2016_05_14-PM-02_33_38
Last ObjectModification:
2015_12_26-PM-04_21_52
Theory : list_1
Home
Index