Nuprl Lemma : append_functionality_wrt_permutation

[A:Type]
  ∀as1,as2,bs1,bs2:A List.  (permutation(A;as1;bs1)  permutation(A;as2;bs2)  permutation(A;as1 as2;bs1 bs2))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) append: as bs list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T uimplies: supposing a permutation: permutation(T;L1;L2) exists: x:A. B[x] and: P ∧ Q prop: top: Top int_seg: {i..j-} bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff guard: {T} not: ¬A false: False satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) ge: i ≥  subtype_rel: A ⊆B less_than: a < b le: A ≤ B lelt: i ≤ j < k less_than': less_than'(a;b) inject: Inj(A;B;f) nat: squash: T rev_implies:  Q iff: ⇐⇒ Q true: True cand: c∧ B
Lemmas referenced :  permutation-length permutation_wf list_wf length-append bnot_wf le_wf le_int_wf less_than_wf assert_wf equal-wf-T-base bool_wf length_wf lt_int_wf uiff_transitivity eqtt_to_assert assert_of_lt_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int equal_wf int_formula_prop_wf int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermConstant_wf itermAdd_wf itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties non_neg_length int_seg_subtype lelt_wf int_seg_wf int_formula_prop_eq_lemma intformeq_wf add-member-int_seg1 int_formula_prop_less_lemma intformless_wf decidable__lt int_term_value_subtract_lemma itermSubtract_wf subtract_wf inject_wf append_wf permute_list_wf subtype_rel_function false_wf length_append subtype_rel_list top_wf full-omega-unsat nat_properties length_wf_nat decidable__equal_int add-is-int-iff list_extensionality nat_wf iff_weakening_equal add_functionality_wrt_eq true_wf squash_wf permute_list_length select_wf permute_list_select subtype_rel_self select_append_front select_append_back and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis because_Cache productElimination universeEquality isect_memberEquality voidElimination voidEquality sqequalRule lambdaEquality baseClosed equalitySymmetry equalityTransitivity cumulativity rename setElimination unionElimination equalityElimination independent_functionElimination dependent_functionElimination computeAll intEquality int_eqEquality dependent_pairFormation applyLambdaEquality addEquality independent_pairFormation dependent_set_memberEquality natural_numberEquality functionExtensionality applyEquality productEquality approximateComputation imageElimination closedConclusion baseApply promote_hyp pointwiseFunctionality imageMemberEquality instantiate hyp_replacement

Latex:
\mforall{}[A:Type]
    \mforall{}as1,as2,bs1,bs2:A  List.
        (permutation(A;as1;bs1)  {}\mRightarrow{}  permutation(A;as2;bs2)  {}\mRightarrow{}  permutation(A;as1  @  as2;bs1  @  bs2))



Date html generated: 2019_06_20-PM-01_37_49
Last ObjectModification: 2018_08_21-PM-11_00_37

Theory : list_1


Home Index