Nuprl Lemma : permute_list_select

[T:Type]. ∀[L:T List]. ∀[f:ℕ||L|| ⟶ ℕ||L||]. ∀[i:ℕ||L||].  ((L f)[i] L[f i] ∈ T)


Proof




Definitions occuring in Statement :  permute_list: (L f) select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T permute_list: (L f) subtype_rel: A ⊆B uimplies: supposing a ge: i ≥  guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] le: A ≤ B prop: decidable: Dec(P) or: P ∨ Q nat: not: ¬A implies:  Q false: False satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top true: True squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  mklist_select length_wf_nat int_seg_wf length_wf select_wf non_neg_length int_seg_properties decidable__le lelt_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformnot_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_not_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma equal_wf squash_wf true_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality cumulativity hypothesis natural_numberEquality sqequalRule isect_memberEquality axiomEquality because_Cache functionEquality lambdaEquality applyEquality functionExtensionality independent_isectElimination setElimination rename productElimination dependent_functionElimination dependent_set_memberEquality independent_pairFormation unionElimination equalityTransitivity equalitySymmetry applyLambdaEquality independent_functionElimination voidElimination dependent_pairFormation int_eqEquality intEquality voidEquality computeAll imageElimination imageMemberEquality baseClosed universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:\mBbbN{}||L||  {}\mrightarrow{}  \mBbbN{}||L||].  \mforall{}[i:\mBbbN{}||L||].    ((L  o  f)[i]  =  L[f  i])



Date html generated: 2017_04_17-AM-08_09_34
Last ObjectModification: 2017_02_27-PM-04_37_52

Theory : list_1


Home Index