Nuprl Lemma : cycle-transitive2

n:ℕ. ∀L:ℕList.  (∀x∈L.(∀y∈L.∃m:ℕ||L||. ((cycle(L)^m x) y ∈ ℕn))) supposing no_repeats(ℕn;L)


Proof




Definitions occuring in Statement :  cycle: cycle(L) l_all: (∀x∈L.P[x]) no_repeats: no_repeats(T;l) length: ||as|| list: List fun_exp: f^n int_seg: {i..j-} nat: uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] nat: implies:  Q so_lambda: λ2x.t[x] prop: subtype_rel: A ⊆B le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q l_member: (x ∈ l) exists: x:A. B[x] cand: c∧ B int_seg: {i..j-} sq_type: SQType(T) guard: {T} lelt: i ≤ j < k
Lemmas referenced :  no_repeats_witness int_seg_wf l_all_iff l_member_wf l_all_wf exists_wf length_wf equal_wf fun_exp_wf int_seg_subtype_nat false_wf cycle_wf subtype_base_sq set_subtype_base lelt_wf int_subtype_base cycle-transitive no_repeats_wf list_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis independent_functionElimination because_Cache dependent_functionElimination sqequalRule lambdaEquality applyEquality independent_isectElimination independent_pairFormation setEquality productElimination instantiate cumulativity intEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}L:\mBbbN{}n  List.    (\mforall{}x\mmember{}L.(\mforall{}y\mmember{}L.\mexists{}m:\mBbbN{}||L||.  ((cycle(L)\^{}m  x)  =  y)))  supposing  no\_repeats(\mBbbN{}n;L)



Date html generated: 2016_05_14-PM-02_27_25
Last ObjectModification: 2015_12_26-PM-04_23_56

Theory : list_1


Home Index