Nuprl Lemma : cycle-transitive2
∀n:ℕ. ∀L:ℕn List.  (∀x∈L.(∀y∈L.∃m:ℕ||L||. ((cycle(L)^m x) = y ∈ ℕn))) supposing no_repeats(ℕn;L)
Proof
Definitions occuring in Statement : 
cycle: cycle(L)
, 
l_all: (∀x∈L.P[x])
, 
no_repeats: no_repeats(T;l)
, 
length: ||as||
, 
list: T List
, 
fun_exp: f^n
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
apply: f a
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
l_member: (x ∈ l)
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
int_seg: {i..j-}
, 
sq_type: SQType(T)
, 
guard: {T}
, 
lelt: i ≤ j < k
Lemmas referenced : 
no_repeats_witness, 
int_seg_wf, 
l_all_iff, 
l_member_wf, 
l_all_wf, 
exists_wf, 
length_wf, 
equal_wf, 
fun_exp_wf, 
int_seg_subtype_nat, 
false_wf, 
cycle_wf, 
subtype_base_sq, 
set_subtype_base, 
lelt_wf, 
int_subtype_base, 
cycle-transitive, 
no_repeats_wf, 
list_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
dependent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
independent_isectElimination, 
independent_pairFormation, 
setEquality, 
productElimination, 
instantiate, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
dependent_set_memberEquality
Latex:
\mforall{}n:\mBbbN{}.  \mforall{}L:\mBbbN{}n  List.    (\mforall{}x\mmember{}L.(\mforall{}y\mmember{}L.\mexists{}m:\mBbbN{}||L||.  ((cycle(L)\^{}m  x)  =  y)))  supposing  no\_repeats(\mBbbN{}n;L)
Date html generated:
2016_05_14-PM-02_27_25
Last ObjectModification:
2015_12_26-PM-04_23_56
Theory : list_1
Home
Index