Nuprl Lemma : cycle-transitive

n:ℕ. ∀L:ℕList.  ∀a,b:ℕ||L||.  ∃m:ℕ||L||. ((cycle(L)^m L[a]) L[b] ∈ ℕn) supposing no_repeats(ℕn;L)


Proof




Definitions occuring in Statement :  cycle: cycle(L) no_repeats: no_repeats(T;l) select: L[n] length: ||as|| list: List fun_exp: f^n int_seg: {i..j-} nat: uimplies: supposing a all: x:A. B[x] exists: x:A. B[x] apply: a natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] nat: implies:  Q int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q prop: exists: x:A. B[x] lelt: i ≤ j < k and: P ∧ Q guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top less_than: a < b squash: T le: A ≤ B subtype_rel: A ⊆B less_than': less_than'(a;b) true: True iff: ⇐⇒ Q rev_implies:  Q eq_int: (i =z j) subtract: m ifthenelse: if then else fi  bfalse: ff compose: g bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) sq_type: SQType(T) bnot: ¬bb assert: b nequal: a ≠ b ∈  so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  no_repeats_witness int_seg_wf decidable__le length_wf no_repeats_wf list_wf nat_wf subtract_wf int_seg_properties nat_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf non_neg_length fun_exp_wf le_wf cycle_wf select_wf length_wf_nat equal_wf squash_wf true_wf cycle-transitive1 int_seg_subtype_nat false_wf iff_weakening_equal fun_exp_unroll fun_exp0_lemma apply-cycle-member eq_int_wf eqtt_to_assert assert_of_eq_int eqff_to_assert bool_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int decidable__equal_int intformeq_wf int_formula_prop_eq_lemma itermAdd_wf int_term_value_add_lemma fun_exp_add_apply set_subtype_base int_subtype_base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename hypothesisEquality hypothesis independent_functionElimination dependent_functionElimination because_Cache unionElimination dependent_pairFormation dependent_set_memberEquality independent_pairFormation productElimination independent_isectElimination lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll imageElimination applyEquality equalityTransitivity equalitySymmetry applyLambdaEquality universeEquality imageMemberEquality baseClosed equalityElimination promote_hyp instantiate cumulativity addEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}L:\mBbbN{}n  List.    \mforall{}a,b:\mBbbN{}||L||.    \mexists{}m:\mBbbN{}||L||.  ((cycle(L)\^{}m  L[a])  =  L[b])  supposing  no\_repeats(\mBbbN{}n;L)



Date html generated: 2017_04_17-AM-08_19_02
Last ObjectModification: 2017_02_27-PM-04_43_45

Theory : list_1


Home Index