Nuprl Lemma : apply-cycle-member

[n:ℕ]. ∀[L:ℕList].
  ∀[i:ℕ||L||]. ((cycle(L) L[i]) if (i =z ||L|| 1) then L[0] else L[i 1] fi  ∈ ℕn) supposing no_repeats(ℕn;L)


Proof




Definitions occuring in Statement :  cycle: cycle(L) no_repeats: no_repeats(T;l) select: L[n] length: ||as|| list: List int_seg: {i..j-} nat: ifthenelse: if then else fi  eq_int: (i =z j) uimplies: supposing a uall: [x:A]. B[x] apply: a subtract: m add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a cycle: cycle(L) let: let member: t ∈ T nat: prop: subtype_rel: A ⊆B int_seg: {i..j-} so_lambda: λ2x.t[x] so_apply: x[s] not: ¬A implies:  Q false: False ge: i ≥  lelt: i ≤ j < k and: P ∧ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q cons: [a b] decidable: Dec(P) nequal: a ≠ b ∈  assert: b bnot: ¬bb sq_type: SQType(T) guard: {T} subtract: m so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] nil: [] select: L[n] or: P ∨ Q less_than: a < b squash: T cand: c∧ B so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) true: True l_member: (x ∈ l)
Lemmas referenced :  int_seg_wf length_wf no_repeats_wf list_wf istype-nat null_wf equal-wf-base bool_wf list_subtype_base set_subtype_base lelt_wf istype-int int_subtype_base assert_wf bnot_wf not_wf istype-assert istype-void length_of_nil_lemma int_seg_properties nat_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_le_lemma int_formula_prop_wf uiff_transitivity eqtt_to_assert assert_of_null iff_transitivity iff_weakening_uiff eqff_to_assert assert_of_bnot btrue_neq_bfalse btrue_wf null_nil_lemma and_wf bfalse_wf null_cons_lemma length_of_cons_lemma product_subtype_list neg_assert_of_eq_int assert-bnot bool_subtype_base subtype_base_sq bool_cases_sqequal equal_wf assert_of_eq_int eq_int_wf satisfiable-full-omega-tt decidable__equal_int base_wf stuck-spread list-cases hd_wf decidable__le intformnot_wf int_formula_prop_not_lemma reduce_hd_cons_lemma istype-base select_wf decidable__lt subtract_wf itermSubtract_wf int_term_value_subtract_lemma itermAdd_wf int_term_value_add_lemma ge_wf istype-less_than list_ind_nil_lemma colength-cons-not-zero colength_wf_list istype-false istype-le subtract-1-ge-0 spread_cons_lemma le_wf list_ind_cons_lemma nil_wf cons_wf squash_wf true_wf istype-universe eq_int_eq_true subtype_rel_self iff_weakening_equal intformimplies_wf int_formual_prop_imp_lemma non_neg_length select_cons_tl add-is-int-iff false_wf no_repeats_cons subtract-is-int-iff add-associates add-swap add-commutes zero-add le_weakening2 add-subtract-cancel subtract-add-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  sqequalRule Error :universeIsType,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality setElimination rename because_Cache hypothesis hypothesisEquality baseApply closedConclusion baseClosed applyEquality independent_isectElimination intEquality Error :lambdaEquality_alt,  Error :equalityIstype,  sqequalBase equalitySymmetry Error :functionIsType,  applyLambdaEquality equalityTransitivity productElimination approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  int_eqEquality dependent_functionElimination Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :inhabitedIsType,  Error :lambdaFormation_alt,  unionElimination equalityElimination hypothesis_subsumption dependent_set_memberEquality cumulativity instantiate promote_hyp minusEquality computeAll lambdaEquality dependent_pairFormation voidEquality isect_memberEquality lambdaFormation imageElimination addEquality Error :productIsType,  intWeakElimination axiomEquality Error :functionIsTypeImplies,  Error :dependent_set_memberEquality_alt,  universeEquality imageMemberEquality pointwiseFunctionality

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[L:\mBbbN{}n  List].
    \mforall{}[i:\mBbbN{}||L||].  ((cycle(L)  L[i])  =  if  (i  =\msubz{}  ||L||  -  1)  then  L[0]  else  L[i  +  1]  fi  ) 
    supposing  no\_repeats(\mBbbN{}n;L)



Date html generated: 2019_06_20-PM-01_39_56
Last ObjectModification: 2018_11_28-PM-03_20_47

Theory : list_1


Home Index