Nuprl Lemma : decidable__squash-list-match-aux-ext

[A,B:Type]. ∀[R:A ⟶ B ⟶ ℙ].
  ((∀a:A. ∀b:B.  Dec(R[a;b]))  (∀bs:B List. ∀as:A List. ∀used:ℤ List.  Dec(↓list-match-aux(as;bs;used;a,b.R[a;b]))))


Proof




Definitions occuring in Statement :  list-match-aux: list-match-aux(L1;L2;used;a,b.R[a; b]) list: List decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] squash: T implies:  Q function: x:A ⟶ B[x] int: universe: Type
Definitions unfolded in proof :  member: t ∈ T ifthenelse: if then else fi  decidable__squash-list-match-aux list_induction decidable_functionality decidable__exists_int_seg decidable__and2 decidable__not decidable__assert iff_preserves_decidability decidable__implies decidable__false decidable__and any: any x uall: [x:A]. B[x] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s1;s2;s3;s4] so_lambda: λ2x.t[x] top: Top so_apply: x[s] uimplies: supposing a
Lemmas referenced :  decidable__squash-list-match-aux lifting-strict-decide strict4-decide lifting-strict-callbyvalue list_induction decidable_functionality decidable__exists_int_seg decidable__and2 decidable__not decidable__assert iff_preserves_decidability decidable__implies decidable__false decidable__and
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry isectElimination baseClosed isect_memberEquality voidElimination voidEquality independent_isectElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}a:A.  \mforall{}b:B.    Dec(R[a;b]))
    {}\mRightarrow{}  (\mforall{}bs:B  List.  \mforall{}as:A  List.  \mforall{}used:\mBbbZ{}  List.    Dec(\mdownarrow{}list-match-aux(as;bs;used;a,b.R[a;b]))))



Date html generated: 2018_05_21-PM-00_47_46
Last ObjectModification: 2018_05_19-AM-06_50_45

Theory : list_1


Home Index